Grading Scheme

The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

  • There is a 25% penalty per business day for any late submissions. "Late" means handed in after the deadline. Thus, if the deadline is 5pm and you hand in an assignment at 5:01pm, you will be penalized. The penalties are cumulative. If an assignment is due at 5pm on Monday and you hand it in at 5:01pm on Tuesday (two days late), your grade will be (1-25%)^2 of the grade you would have received had you turned it in on time.
  • Some assignments are "Individual" and team members are individually responsible for completing the assignment on time and will receive an individual grade. Many assignments are "Team" assignments and a single deliverable is handed in by the team. In most cases, all team members will receive the same grade on these assignments. However, the course staff reserves the right to "break up" any group's work and grade individually. This will be done if we feel the work or work quality has not been evenly distributed between group members.
  • The evaluation sheets provide a sense of what we are looking for with each deliverable. You should keep in mind, though, that the evaluation is not strictly binary. In other words, just because you have "checked off" each component described in the evaluation sheet does not ensure that you will receive a perfect score.

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Initial Post Individual 5 None
Lab Notebook Individual 50 PDF
Request for Approval Team 5 None
Weekly TA Meetings Team N/A None
Project Proposal Team 25 PDF
Eagle Assignment Individual 10 PDF
Soldering Assignment Individual 10 PDF
Lab Safety Training Individual Lab Access None
Design Document Check Individual 5 None
Design Document
Requirements and Verification
Team 40 PDF
Design Review * Team 20 PDF
Individual Progress Report Individual 25 PDF
Mock Demo Individual 5 None
Mock Presentation Individual 5 None
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Checkout Team N/A PDF
Peer Reviews (3 total) Individual 15 (total) None
Teamwork Individual 40 None
Continuing your project Priceless None

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

Electronic Automatic Transmission for Bicycle

Tianqi Liu, Ruijie Qi, Xingkai Zhou

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.

Project Videos