Grading Scheme

The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

  • There is a 25% penalty per business day for any late submissions. "Late" means handed in after the deadline. Thus, if the deadline is 5pm and you hand in an assignment at 5:01pm, you will be penalized. The penalties are cumulative. If an assignment is due at 5pm on Monday and you hand it in at 5:01pm on Tuesday (two days late), your grade will be (1-25%)^2 of the grade you would have received had you turned it in on time.
  • Some assignments are "Individual" and team members are individually responsible for completing the assignment on time and will receive an individual grade. Many assignments are "Team" assignments and a single deliverable is handed in by the team. In most cases, all team members will receive the same grade on these assignments. However, the course staff reserves the right to "break up" any group's work and grade individually. This will be done if we feel the work or work quality has not been evenly distributed between group members.
  • The evaluation sheets provide a sense of what we are looking for with each deliverable. You should keep in mind, though, that the evaluation is not strictly binary. In other words, just because you have "checked off" each component described in the evaluation sheet does not ensure that you will receive a perfect score.

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Initial Post Team 5 None
Lab Notebook Individual 50 PDF
Request for Approval Team 5 None
Weekly TA Meetings Team N/A None
Project Proposal Team 25 PDF
Eagle Assignment Individual 10 PDF
Soldering Assignment Individual 10 PDF
Lab Safety Training Individual Lab Access None
Mock Design Review Individual 5 None
Design Document
Requirements and Verification
Team 40 PDF
Design Review * Team 20 PDF
Individual Progress Report Individual 25 PDF
Mock Demo Individual 5 None
Mock Presentation Individual 5 None
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Checkout Team N/A PDF
Peer Reviews (3 total) Individual 15 (total) None
Teamwork Individual 40 PDF
Continuing your project Priceless None

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos