Grading Scheme

The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

  • There is a 25% penalty per day for any late submissions. "Late" means handed in after the deadline. Thus, if the deadline is 5pm and you hand in an assignment at 5:01pm, you will be penalized. The penalties are cumulative. If an assignment is due at 5pm on Monday and you hand it in at 5:01pm on Tuesday (two days late), your grade will be (1-25%)^2 of the grade you would have received had you turned it in on time.
  • Some assignments are "Individual" and team members are individually responsible for completing the assignment on time and will receive an individual grade. Many assignments are "Team" assignments and a single deliverable is handed in by the team. In most cases, all team members will receive the same grade on these assignments. However, the course staff reserves the right to "break up" any group's work and grade individually. This will be done if we feel the work or work quality has not been evenly distributed between group members.
  • The evaluation sheets provide a sense of what we are looking for with each deliverable. You should keep in mind, though, that the evaluation is not strictly binary. In other words, just because you have "checked off" each component described in the evaluation sheet does not ensure that you will receive a perfect score.

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Initial Post Individual 5 None
Lab Notebook Individual 50 PDF
Lab Safety Training Individual Lab Access None
Request for Approval Team 5 None
Weekly TA Meetings Team N/A None
Project Proposal Team 25 PDF
Eagle Assignment Individual 10 PDF
Soldering Assignment Individual 10 PDF
Design Document Check Individual 5 None
Design Document
Requirements and Verification
Team 40 PDF
Design Review * Team 20 PDF
Individual Progress Report Individual 25 PDF
Mock Demo Individual 5 None
Mock Presentation Individual 5 None
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Checkout Team N/A PDF
Peer Reviews (3 total) Individual 15 (total) None
Teamwork Individual 40 None
Continuing your project Priceless None

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos