Final Presentation


Presentations of the projects are given a few days after the Final Demo to an audience of fellow student reviewers, the lab instructors, and occasionally faculty or even students from outside the class who are following up a project of personal interest to them. The style is formal and professional, and students should dress accordingly (Generally business professional, or what you would wear to a career fair).

Requirements and Grading

Each project team has 25 minutes for a Powerpoint presentation and questions. Every group member must present their own work contributing to the project and be ready to answer questions. Presentations are judged on the basis of presentation technique and of technical organization and content.

Presentation technique includes dress, use of display materials (slides), clarity of speech, absence of filler words/fidgeting, proper eye contact with audience and smooth transitions between speakers. Content is judged on use of a proper introduction, orderly and connected development of ideas, absence of unnecessary details, proper pacing to stay within the allotted time, and an adequate summary at the close of the talk. Quantitative results are expected whenever applicable. Here is a general outline to follow:

  1. Introduction to your team and your project.
  2. Objective. What problem are you solving?
  3. Brief review of original design, statement on areas of design that changed, and overview of each functional block's requirements.
  4. Description of project build and functional test results. You can choose to include a short (30s) video of your project here.
  5. Discussion of successes and challenges, as well as explanations of any failed verifications demonstrating and understanding of the engineering reason behind the failure
  6. Conclusions from the project: what did you learn, what would you do differently if you redesigned your project, etc.
  7. Recommendations for further work.

Any significant, relevant ethical issues should be briefly addressed, preferably in a single slide.

Presentations will be graded using the presentation grading rubric. Your slides should follow ECE or College of Engineering presentation theming.

Submission and Deadlines

Slides for your final presentation must be uploaded to your project page on PACE prior to your presentation time. Deadlines for signing up may be found on the Calendar. Sign-up for the final presentation is done through PACE. Remember to sign up for a peer review of another group.

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos