Getting Parts for Your Project

Steps for obtaining parts

As soon as you know which parts you'll need for your design, it's a good idea to start acquiring them. There are several methods that varying widely in cost and waiting time. The primary methods are listed below, most desirable first.

Note: Each group has a budget of around $100 for parts and resources that may be charged to the ECE 445 course account. If small parts are needed, it is strongly encouraged that you just buy it yourself. Since there is no required textbook for the course, we figure the small monetary payout is more than offset by the savings in time and hassle for your group. Also, if you intend to keep your project when you're finished, we ask that you purchase the parts yourself.

Checkout Hardware from ECE 445

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. Please note that parts that you checkout from the lab must be returned by the end of the semester or your student account will be charged.

Please see the working inventory of all components available for checkout in the lab. This inventory is as inclusive as possible but there may be additional items around the lab - feel free to look around but items must be checked out through a TA.


Parts may be special ordered from Amazon, Digikey, or Mouser through my.ece. Please refer to this tutorial for help using the my.ece purchasing app. Also, ask your TA or check your email for the ece 445 account number. This option requires TA approval before the order is processed. Once you've placed the order, email your TA to let them know there is an order waiting for their approval so that your order can be processed as quickly as possible. Otherwise, the order may be delayed! Since many part orders are usually placed with common vendors like Digi-key, these orders may be grouped into bulk orders placed on Wednesday and Friday.

Parts ordered through this method will be delivered to the ECE Supply Center.

ECE Supply Center

An alternative option is to have the parts ordered from the ECE Supply Center (located in 1031 ECEB). For this option, you will need to fill out an ECE Supply Center Ordering Form and have your TA sign it. Alternatively, you can charge the parts to your student ID if you need to pay for them yourself.

Free Samples from Companies

It should be mentioned that companies many times are willing to provide small quantities of their products to students engaged in design projects. You might consider approaching the manufacturer directly, particularly regarding their newer products which they are interested in promoting. Don't count on success with this, but it has often been very useful.

Personal Purchases

It is always possible and encouraged to purchase your own parts from a local store (Radio Shack, Best Buy, etc.) or order them from online vendors. Personal purchases will not be reimbursed by the department.

The Business Office (last resort)

If all of these methods fail, your order will need to go through the ECE Business Office with the help of your TA.

Master Bus Processor

Clay Kaiser, Philip Macias, Richard Mannion

Master Bus Processor

Featured Project

General Description

We will design a Master Bus Processor (MBP) for music production in home studios. The MBP will use a hybrid analog/digital approach to provide both the desirable non-linearities of analog processing and the flexibility of digital control. Our design will be less costly than other audio bus processors so that it is more accessible to our target market of home studio owners. The MBP will be unique in its low cost as well as in its incorporation of a digital hardware control system. This allows for more flexibility and more intuitive controls when compared to other products on the market.

Design Proposal

Our design would contain a core functionality with scalability in added functionality. It would be designed to fit in a 2U rack mount enclosure with distinct boards for digital and analog circuits to allow for easier unit testings and account for digital/analog interference.

The audio processing signal chain would be composed of analog processing 'blocks’--like steps in the signal chain.

The basic analog blocks we would integrate are:

Compressor/limiter modes

EQ with shelf/bell modes

Saturation with symmetrical/asymmetrical modes

Each block’s multiple modes would be controlled by a digital circuit to allow for intuitive mode selection.

The digital circuit will be responsible for:

Mode selection

Analog block sequence

DSP feedback and monitoring of each analog block (REACH GOAL)

The digital circuit will entail a series of buttons to allow the user to easily select which analog block to control and another button to allow the user to scroll between different modes and presets. Another button will allow the user to control sequence of the analog blocks. An LCD display will be used to give the user feedback of the current state of the system when scrolling and selecting particular modes.

Reach Goals

added DSP functionality such as monitoring of the analog functions

Replace Arduino boards for DSP with custom digital control boards using ATmega328 microcontrollers (same as arduino board)

Rack mounted enclosure/marketable design

System Verification

We will qualify the success of the project by how closely its processing performance matches the design intent. Since audio 'quality’ can be highly subjective, we will rely on objective metrics such as Gain Reduction (GR [dB]), Total Harmonic Distortion (THD [%]), and Noise [V] to qualify the analog processing blocks. The digital controls will be qualified by their ability to actuate the correct analog blocks consistently without causing disruptions to the signal chain or interference. Additionally, the hardware user interface will be qualified by ease of use and intuitiveness.

Project Videos