People :: ECE 445 - Senior Design Laboratory

People

TA Office Hours

Held weekly in the senior design lab (ECEB 2070/2072). NOTE:

Blue names are office hours held online via zoom.

Names highlighted in orange are additional office hours available up to the due date of the soldering assignment.

There are no office hours during the weeks of board reviews or final demos.

Chat Room

Ask technical questions here:

Spring 2024 Instructors

Name Area
Prof. Arne Fliflet (Instructor)
3056
afliflet@illinois.edu
microwave generation and applications
Prof. Viktor Gruev (Instructor)

vgruev@illinois.edu
Prof. Rakesh Kumar (Instructor)

rakeshk@illinois.edu
Prof. Olga Mironenko (Instructor)

olgamiro@illinois.edu
Prof. Michael Oelze (Instructor)
ECEB 2056
oelze@illinois.edu
Biomedical Imaging, Acoustics, Nondestructive Testing
Prof. Jonathon Schuh (Instructor)
4066 ECEB
schuh4@illinois.edu
Computational Physics, Electromechanics, Fluid Mechanics, Energy Storage, Tribology
Prof. Victoria Shao (Instructor)

yangshao@illinois.edu
Nikhil Arora (TA)

na32@illinois.edu
Mechanical Design, Automotive Technologies, Additive Manufacturing
Sainath Barbhai (TA)

barbhai2@illinois.edu
Design Engineering, Finite Element Method, Sensors and Actuators
Zutai Chen (TA)

zutaic2@illinois.edu
Vishal Dayalan (TA)

vishald2@illinois.edu
Data Science and Analytics, Mechanical Design, CAD, Simulation, System Design, Robotics and Product Development
Luoyan Li (TA)

luoyanl2@illinois.edu
machine learning, hardware acceleration
Zicheng Ma (TA)

zicheng5@illinois.edu
Cloud computing, Database systems
Abhisheka Mathur Sekar (TA)

am113@illinois.edu
Mechanical Engineering, Design, CAD Modelling and Simulation, Fluid Mechanics, MRI, Human centric designs
David Null (TA)

null2@illinois.edu
Robotics, Computer Vision, Navigation, Coordinated Systems, Control Systems.
Jason Paximadas (TA)

jop2@illinois.edu
Power electronics, control, and instrumentation
Sanjana Pingali (TA)

pingali4@illinois.edu
Machine Learning Systems
Matthew Qi (TA)

mqi6@illinois.edu
Power Electronics
Nithin Balaji Shanthini Praveena Purushothaman (TA)

ns49@illinois.edu
My area of interest include Mechanical Design, Design Analysis, Supply Chain(Circular), Industry 4.0, Data Science and RPA.
Selva Subramaniam (TA)

ss170@illinois.edu
Koushik Udayachandran (TA)

koushik3@illinois.edu
Unmanned aerial vehicles. Risk assesment. Autonomous underwater vehicles . Aircraft design. Systems engineering and integration . Flight testing
Surya Vasanth (TA)

vasanth4@illinois.edu
Data Science and Analytics, Internet of Things, Human Centric Design
Angquan Yu (TA)

angquan2@illinois.edu
Douglas Yu (TA)

zeduoyu2@illinois.edu
Hardware Design, Computer Architecture, AI
Jason Zhang (TA)

zekaiz2@illinois.edu
AR, Robot and human interactions
Jialiang Zhang (TA)
CSL 403
jz23@illinois.edu
Hardware Systems, Computer Architecture
Tianxiang Zheng (TA)

tz32@illinois.edu
FPGA hls and mlir; Chronic signal processing; robotics and control; 3D printing;

Other Important People

https://ece.illinois.edu/about/directory/staff

Musical Hand

Ramsey Foote, Thomas MacDonald, Michelle Zhang

Musical Hand

Featured Project

# Musical Hand

Team Members:

- Ramesey Foote (rgfoote2)

- Michelle Zhang (mz32)

- Thomas MacDonald (tcm5)

# Problem

Musical instruments come in all shapes and sizes; however, transporting instruments often involves bulky and heavy cases. Not only can transporting instruments be a hassle, but the initial purchase and maintenance of an instrument can be very expensive. We would like to solve this problem by creating an instrument that is lightweight, compact, and low maintenance.

# Solution

Our project involves a wearable system on the chest and both hands. The left hand will be used to dictate the pitches of three “strings” using relative angles between the palm and fingers. For example, from a flat horizontal hand a small dip in one finger is associated with a low frequency. A greater dip corresponds to a higher frequency pitch. The right hand will modulate the generated sound by adding effects such as vibrato through lateral motion. Finally, the brains of the project will be the central unit, a wearable, chest-mounted subsystem responsible for the audio synthesis and output.

Our solution would provide an instrument that is lightweight and easy to transport. We will be utilizing accelerometers instead of flex sensors to limit wear and tear, which would solve the issue of expensive maintenance typical of more physical synthesis methods.

# Solution Components

The overall solution has three subsystems; a right hand, left hand, and a central unit.

## Subsystem 1 - Left Hand

The left hand subsystem will use four digital accelerometers total: three on the fingers and one on the back of the hand. These sensors will be used to determine the angle between the back of the hand and each of the three fingers (ring, middle, and index) being used for synthesis. Each angle will correspond to an analog signal for pitch with a low frequency corresponding to a completely straight finger and a high frequency corresponding to a completely bent finger. To filter out AC noise, bypass capacitors and possibly resistors will be used when sending the accelerometer signals to the central unit.

## Subsystem 2 - Right Hand

The right subsystem will use one accelerometer to determine the broad movement of the hand. This information will be used to determine how much of a vibrato there is in the output sound. This system will need the accelerometer, bypass capacitors (.1uF), and possibly some resistors if they are needed for the communication scheme used (SPI or I2C).

## Subsystem 3 - Central Unit

The central subsystem utilizes data from the gloves to determine and generate the correct audio. To do this, two microcontrollers from the STM32F3 series will be used. The left and right hand subunits will be connected to the central unit through cabling. One of the microcontrollers will receive information from the sensors on both gloves and use it to calculate the correct frequencies. The other microcontroller uses these frequencies to generate the actual audio. The use of two separate microcontrollers allows for the logic to take longer, accounting for slower human response time, while meeting needs for quicker audio updates. At the output, there will be a second order multiple feedback filter. This will get rid of any switching noise while also allowing us to set a gain. This will be done using an LM358 Op amp along with the necessary resistors and capacitors to generate the filter and gain. This output will then go to an audio jack that will go to a speaker. In addition, bypass capacitors, pull up resistors, pull down resistors, and the necessary programming circuits will be implemented on this board.

# Criterion For Success

The minimum viable product will consist of two wearable gloves and a central unit that will be connected together via cords. The user will be able to adjust three separate notes that will be played simultaneously using the left hand, and will be able to apply a sound effect using the right hand. The output audio should be able to be heard audibly from a speaker.

Project Videos