Order a Pcb

Custom Printed Circuit Boards (PCBs)

The primary method for making PCBs is to order them through PCBway. With the help of your TA, you can order a simple PCB (2 layers) through PCBway at no cost to you. Alternatively, you can order a PCB from any outside vendor (including PCBway) and pay for the cost of the board out of pocket. By paying for a PCB yourself, you are not required to meet the deadlines imposed by the course and often will get your board more quickly.

In rare cases, some teams will be allowed to order PCBs through the Electronic Services Shop in ECEB. If you have need of special board layouts or require a PCB very early in the semester, please discuss this option with your TA.

PCBway Orders Through the Course

Orders through PCBway can be submitted and paid for by the ECE department with the help of your TA. Orders will be uploaded to PCBway by your TA and paid for on the dates listed on the course calendar. Please note that the PCBway orders will not be manufactured or shipped until they are paid for so please be aware of the lag time between order submission and payment. In addition, your order must pass PCBway's audit before the payment date for your order to be processed. In order to help students pass audit more quickly, we have provided a DRC file that can be imported in to EagleCAD to verify that your board meets PCBway's capabilities. Passing the DRC does not guarantee that your board will pass audit but it does greatly increase the probability of that event.

Electronic Services Shop

Orders placed through the Electronic Services Shop will require TA approval so please discuss with your TA before contacting the Services Shop. Please read all the shop PCB web pages before designing and submitting a board order. The software most commonly used is EagleCAD. Contact Mark Smart or Skot Wiedmann in the Electronic Services Shop with questions.

Please be aware of the PCB deadlines posted on the course calendar. If you are unable to meet these deadlines, you will not be able to order a PCB through the the Electronic Services Shop. You will still be able to order PCBs through third party vendors, just be aware that rushed orders can become expensive.

Commercial quality boards

The most commonly used programs for board layout are Eagle and Orcad Layout. The two software packages below allow a schematic to be drawn and translated into a board layout.

Once the board has been laid out, some companies will manufacture small quantities for a very reasonable price.

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos