Order a Pcb

Custom Printed Circuit Boards (PCBs)

The primary method for making PCBs is to order them through PCBway. With the help of your TA, you can order a simple PCB (2 layers) through PCBway at no cost to you. Alternatively, you can order a PCB from any outside vendor (including PCBway) and pay for the cost of the board out of pocket. By paying for a PCB yourself, you are not required to meet the deadlines imposed by the course and often will get your board more quickly.

In rare cases, some teams will be allowed to order PCBs through the Electronic Services Shop in ECEB. If you have need of special board layouts or require a PCB very early in the semester, please discuss this option with your TA.

PCBway Orders Through the Course

Orders through PCBway can be submitted and paid for by the ECE department with the help of your TA. Orders will be uploaded to PCBway by your TA and paid for on the dates listed on the course calendar. Please note that the PCBway orders will not be manufactured or shipped until they are paid for so please be aware of the lag time between order submission and payment. In addition, your order must pass PCBway's audit before the payment date for your order to be processed. In order to help students pass audit more quickly, we have provided a DRC file that can be imported in to EagleCAD to verify that your board meets PCBway's capabilities. Passing the DRC does not guarantee that your board will pass audit but it does greatly increase the probability of that event.

Electronic Services Shop

Orders placed through the Electronic Services Shop will require TA approval so please discuss with your TA before contacting the Services Shop. Please read all the shop PCB web pages before designing and submitting a board order. The software most commonly used is EagleCAD. Contact Mark Smart or Skot Wiedmann in the Electronic Services Shop with questions.

Please be aware of the PCB deadlines posted on the course calendar. If you are unable to meet these deadlines, you will not be able to order a PCB through the the Electronic Services Shop. You will still be able to order PCBs through third party vendors, just be aware that rushed orders can become expensive.

Commercial quality boards

The most commonly used programs for board layout are Eagle and Orcad Layout. The two software packages below allow a schematic to be drawn and translated into a board layout.

Once the board has been laid out, some companies will manufacture small quantities for a very reasonable price.


Aashish Kapur, Connor Lake, Scott Liu


Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors


Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.