Sponsors

Cypress Semiconductor Corporation

Sponsored Projects

  • Automatic Toothpaste Dispenser (Spring 2019)
  • Automatic Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)

Illinois Robotics in Space

Illinois Robotics in Space (IRIS) is an RSO at the University of Illinois at Urbana-Champaign. Every year IRIS competes in the NASA Robotic Mining Competition at Kennedy Space Center, works on smaller robotics-related projects and teaches younger students at local schools about what IRIS does.

Sponsored Projects

  • IRIS Localization System (Spring 2015)
  • IRIS Localization System (Spring 2015)

Illinois Tool Works Inc.

Sponsored Projects

  • Weld Gun Spatial Tracking System (Spring 2019)
  • Weld Gun Spatial Tracking System (Spring 2019)

Micron

Sponsored Projects

  • Soccer Team Gameplay Metrics (Spring 2019)
  • Soccer Team Gameplay Metrics (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)

Siebel Center for Design

Sponsored Projects

  • Reconnaissance robot (SCD pitch) (Spring 2019)
  • Reconnaissance robot (SCD pitch) (Spring 2019)

Illini Solar Car

Sponsor

While Illini Solar Car started as a handful of engineering students in 2014, it takes more than that to create a solar car. Today we have grown into a much larger operation harnessing the skills of students from four colleges at Illinois to create one beautiful product.

Sponsored Projects

  • CUSTOM MPPTS FOR ILLINI SOLAR CAR (Spring 2024)
  • Active Cell Balancing for Solar Vehicle Battery Pack (Spring 2021)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Integrated Li-ion Battery Sensors (Fall 2018)
  • Integrated Li-ion Battery Sensors (Fall 2018)

LASSI

Sponsor

Laboratory for Advanced Space Systems at Illinois

Sponsored Projects

  • Power Board for Illini-Sat3 (Spring 2019)
  • Power Board for Illini-Sat3 (Spring 2019)

Lextech

Sponsor

Northrop Grumman Corporation

Sponsor

Northrop Grumman Corporation has provided funding for laboratory equipment and supplies in the area of applied electromagnetics, as well as support for the following groups.

Sponsored Projects

  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Radio Jammer (Fall 2005)
  • Radio Jammer (Fall 2005)

Advance Devices

Supporter

ARM

Supporter

Boeing

Supporter

Intel

Supporter

Raytheon

Supporter

Rockwell Collins

Supporter

Rockwell Collins has provided funding for laboratory equipment and supplies in the area of applied electromagnetics. A number of RF student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Continuous-frequency Synthesizer (Spring 2005)
  • Continuous-frequency Synthesizer (Spring 2005)
  • football position tracker (Spring 2005)
  • football position tracker (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Car rooftop antenna (Fall 2004)
  • Car rooftop antenna (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)

Skot Wiedmann

Supporter

Sponsored Projects

  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Modular Analog Synthesizer (Fall 2017)
  • Modular Analog Synthesizer (Fall 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)

TAKE Solutions

Supporter

Funded Project 39 (smart door) Spring 2015

Texas Instruments

Supporter

Texas Instruments has donated laboratory equipment for DSP and RFID based projects. A number of student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Miner Tracking Devices (Spring 2006)
  • Miner Tracking Devices (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)

Xilinx

Supporter

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos