Written Resources

Design Methods Reference Books

"Electronics, Project Management and Design", by D. Joseph Stadtmiller, published by Prentice Hall, 2001.
(Paperback w/ CD-ROM: ISBN 0-13-012729-9)

"Engineering Design Methods", by Nigel Cross, published by Wiley
(ISBN 0-471-94228-6)

"Engineering Design for Electrical Engineers" by Alan D. Wilcox, published by Prentice Hall
(ISBN 0-13-278136-0)

"Strategies for Creative Problem Solving" by H. Scott Fogler and Steven E. LeBlanc, published by Prentice Hall
(ISBN 0-13-179318-7)

Sensors and Instrumentation Reference Books

"Measurement, Instrumentation and Sensors Handbook", ed. John Webster, published by CRC Press and IEEE Press, 1999.
(ISBN 0-8493-8347-1)

"Electronic Instrument Handbook", by Clyde Coombs, published by McGraw Hill, 1999.
(Hardcover: ISBN 0071350160, Paperback: ISBN 007026186)

"Capacitive Sensors", by L. Baxter, IEEE Series on Electronic Technology, 1997.
(ISBN 0-7803-1130-2)

High Speed Design Issues

High Speed Digital Design: A Handbook of Black Magic by Howard W. Johnson & Martin Graham, published by Prentice Hall
(ISBN 0-13-395724-1)

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos