Written Resources

Design Methods Reference Books

"Electronics, Project Management and Design", by D. Joseph Stadtmiller, published by Prentice Hall, 2001.
(Paperback w/ CD-ROM: ISBN 0-13-012729-9)

"Engineering Design Methods", by Nigel Cross, published by Wiley
(ISBN 0-471-94228-6)

"Engineering Design for Electrical Engineers" by Alan D. Wilcox, published by Prentice Hall
(ISBN 0-13-278136-0)

"Strategies for Creative Problem Solving" by H. Scott Fogler and Steven E. LeBlanc, published by Prentice Hall
(ISBN 0-13-179318-7)

Sensors and Instrumentation Reference Books

"Measurement, Instrumentation and Sensors Handbook", ed. John Webster, published by CRC Press and IEEE Press, 1999.
(ISBN 0-8493-8347-1)

"Electronic Instrument Handbook", by Clyde Coombs, published by McGraw Hill, 1999.
(Hardcover: ISBN 0071350160, Paperback: ISBN 007026186)

"Capacitive Sensors", by L. Baxter, IEEE Series on Electronic Technology, 1997.
(ISBN 0-7803-1130-2)

High Speed Design Issues

High Speed Digital Design: A Handbook of Black Magic by Howard W. Johnson & Martin Graham, published by Prentice Hall
(ISBN 0-13-395724-1)

Filtered Back – Projection Optical Demonstration

Tori Fujinami, Xingchen Hong, Jacob Ramsey

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.


• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings