Special Circuit

A student whose Senior Thesis Project (ECE 499) does not involve the design and construction or testing of electronic devices or hardware is required to complete a Special Circuit Project in the ECE 445 lab during the semester they take ECE 499. In addition, students enrolled in ECE 445 who are not undertaking a hardware dominant project are required to complete the special circuit (although this is strongly discouraged and the course staff will work with your team to make sure you have enough hardware in your project to avoid having to complete the special circuit.)

The special circuit is typically posted in the middle of the semester. Once you sign up for the special circuit (see below), you will be assigned a TA, a locker, and a special circuit which generally takes about 12-15 hours to complete. When you have it designed and built, you will give a functional demonstration to your TA, who will then inform the professor who will inform undergraduate advising that your task is complete. You are NOT required to attend any of the classes, reviews, demos, or presentations associate with the ECE 445 class.

Sign up for Fall 2018 is now open

Sign up for the Special Circuit assignment on the Lab Access page. Instructions for completing the special circuit will then be provided in the near future. Please check this page for updates.

Control System and User Interface for Hydraulic Bike

Iain Brearton

Featured Project

Parker-Hannifin, a fluid power systems company, hosts an annual competition for the design of a chainless bicycle. A MechSE senior design team of mechanical engineers have created a hydraulic circuit with electromechanical valves, but need a control system, user interface, and electrical power for their system. The user would be able to choose between several operating modes (fluid paths), listed at the end.

My solution to this problem is a custom-designed control system and user interface. Based on sensor feedback and user inputs, the system would change operating modes (fluid paths). Additionally, the system could be improved to suggest the best operating mode by implementing a PI or PID controller. The system would not change modes without user interaction due to safety - previous years' bicycles have gone faster than 20mph.

Previous approaches to this problem have usually not included an electrical engineer. As a result, several teams have historically used commercially-available systems such as Parker's IQAN system (link below) or discrete logic due to a lack of technical knowledge (link below). Apart from these two examples, very little public documentation exists on the electrical control systems used by previous competitors, but I believe that designing a control system and user interface from scratch will be a unique and new approach to controlling the hydraulic system.

I am aiming for a 1-person team as there are 6 MechSE counterparts. I emailed Professor Carney on 10/3/14 and he thought the general concept was acceptable.

Operating modes, simplified:

Direct drive (rider's pedaling power goes directly to hydraulic motor)

Coasting (no power input, motor input and output "shorted")

Charge accumulators (store energy in expanding rubber balloons)

Discharge accumulators (use stored energy to supply power to motor)

Regenerative braking (use motor energy to charge accumulators)

Download Competition Specs: https://uofi.box.com/shared/static/gst4s78tcdmfnwpjmf9hkvuzlu8jf771.pdf

Team using IQAN system (top right corner): https://engineering.purdue.edu/ABE/InfoFor/CurrentStudents/SeniorProjects/2012/GeskeLamneckSparenbergEtAl

Team using discrete logic (page 19): http://deepblue.lib.umich.edu/bitstream/handle/2027.42/86206/ME450?sequence=1