Special Circuit :: ECE 445 - Senior Design Laboratory

Special Circuit

A student whose Senior Thesis Project (ECE 499) does not involve the design and construction or testing of electronic devices or hardware is required to complete a Special Circuit Project in the ECE 445 lab during the semester they take ECE 499. In addition, students enrolled in ECE 445 who are not undertaking a hardware dominant project are required to complete the special circuit (although this is strongly discouraged and the course staff will work with your team to make sure you have enough hardware in your project to avoid having to complete the special circuit.)

The special circuit is typically posted in the middle of the semester. Once you sign up for the special circuit (see below), you will be assigned a TA, a locker, and a special circuit which generally takes about 12-15 hours to complete. When you have it designed and built, you will give a functional demonstration to your TA, who will then inform the professor who will inform undergraduate advising that your task is complete. You are NOT required to attend any of the classes, reviews, demos, or presentations associate with the ECE 445 class.

Sign up for Spring 2020 is now open

Sign up for the Special Circuit assignment on the Lab Access page. Instructions for completing the special circuit will then be provided in the near future. Please check this page for updates.

Link to all Special Circuit design problems. 

Propeller-less Multi-rotor

Ignacio Aguirre Panadero, Bree Peng, Leo Yamamae

Propeller-less Multi-rotor

Featured Project

Our project explored the every-expanding field of drones. We wanted to solve a problem with the dangers of plastic propellers as well as explore new method of propulsion for drones.

Our design uses a centrifugal fan design inspired by Samm Shepard's "This is NOT a Propeller" video where he created a centrifugal fan for a radio controlled plane. We were able to design a fan that has a peak output of 550g per fan that is safe when crashing and when the impeller inside damaged.

The chassis and fans are made of laser-cut polystyrene and is powered using brushless motors typically used for radio-controlled helicopters.

The drone uses an Arduino DUE with a custom shield and a PCB to control the system via Electronic Speed Controllers. The drone also has a feedback loop that will try to level the drone using a MPU6050.

We were able to prove that this method of drone propulsion is possible and is safer than using hard plastic propellers.

Project Videos