Ideation and initial post to Piazza

Video Lectures

Finding a Problem and Generating Solutions m4v
Diving Deeper m4v
Votingm4v
Reverse Brainstormingm4v, notes
Homeworkm4v

Assignment Description

This exercise is intended to facilitate project brainstorming and team formation. Please see the videos linked below for guidance on brainstorming to find problems and engineering solutions to those problems.

In the first lecture, the course staff will assign you into groups of approximately 8 students to work on this assignment. These are not the groups or projects you will be working with on your course project, they are strictly for this assignment!. Each brainstorming group will use the brainstorming methods outlined in the videos above to come up with problem statements and corresponding solutions. This ideation exercise is intended to stimulate the process of finding a suitable senior design project for this semester but not all problem statements or proposed solutions may fit within the scope of ECE 445.

After the first lecture, all students must make a post on the Web Board. This initial post must consist of either a problem statement or a proposed solution and may be posted as a reply to an existing thread.

Requirements and Grading

Grading will be out of 5 total points and awarded based on the existence of substantive post on the Web Board ("Hello world" type posts will not receive credit).

Submission and Deadlines

The initial Web Board post is due by 11:59pm on the date listed on the Course Calendar. All students must either create or respond to a post. Students posting after the deadline will not receive credit.

Control System and User Interface for Hydraulic Bike

Iain Brearton

Featured Project

Parker-Hannifin, a fluid power systems company, hosts an annual competition for the design of a chainless bicycle. A MechSE senior design team of mechanical engineers have created a hydraulic circuit with electromechanical valves, but need a control system, user interface, and electrical power for their system. The user would be able to choose between several operating modes (fluid paths), listed at the end.

My solution to this problem is a custom-designed control system and user interface. Based on sensor feedback and user inputs, the system would change operating modes (fluid paths). Additionally, the system could be improved to suggest the best operating mode by implementing a PI or PID controller. The system would not change modes without user interaction due to safety - previous years' bicycles have gone faster than 20mph.

Previous approaches to this problem have usually not included an electrical engineer. As a result, several teams have historically used commercially-available systems such as Parker's IQAN system (link below) or discrete logic due to a lack of technical knowledge (link below). Apart from these two examples, very little public documentation exists on the electrical control systems used by previous competitors, but I believe that designing a control system and user interface from scratch will be a unique and new approach to controlling the hydraulic system.

I am aiming for a 1-person team as there are 6 MechSE counterparts. I emailed Professor Carney on 10/3/14 and he thought the general concept was acceptable.

Operating modes, simplified:

Direct drive (rider's pedaling power goes directly to hydraulic motor)

Coasting (no power input, motor input and output "shorted")

Charge accumulators (store energy in expanding rubber balloons)

Discharge accumulators (use stored energy to supply power to motor)

Regenerative braking (use motor energy to charge accumulators)

Download Competition Specs: https://uofi.box.com/shared/static/gst4s78tcdmfnwpjmf9hkvuzlu8jf771.pdf

Team using IQAN system (top right corner): https://engineering.purdue.edu/ABE/InfoFor/CurrentStudents/SeniorProjects/2012/GeskeLamneckSparenbergEtAl

Team using discrete logic (page 19): http://deepblue.lib.umich.edu/bitstream/handle/2027.42/86206/ME450?sequence=1