Project Proposal

Video Lecture

Video, Slides

Description

The proposal outlines your project's motivation, design, requirements, ethics, and safety. The project proposal is an expansion on the information provided in the RFA. Use the following format:

  1. Introduction

    • Objective: One to two paragraphs detailing the problem statement and proposed solution.
    • Background: One to two paragraphs explaining the context of the problem to be solved by your project, including any relevent references to justify the existence and/or importance of the problem (i.e., the need or want for a solution).
    • Physical Design: A pictorial representation of your project that puts your solution in context. Not necessarily restricted to your design. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.
    • High-level requirements list: A list of three quantitative characteristics that this project must exhibit in order to solve the problem. Each high-level requirement must be stated in complete sentences and displayed as a bulleted list. Avoid mentioning "cost" as a high level requirement.
  2. Design
    • Block Diagram: A general block diagram of the design of your solution. Each block should be as modular as possible and represent a subsystem of your design. In other words, they can be implemented independently and re-assembled later. The block diagram should be accompanied by a brief (1 paragraph) description of the high level design justifying that the design will satisfy the high-level requirements.
    • Functional Overview: A brief description of the function of each block in the block diagram and explain how each block contributes to the overall design and feature list above. Include a discussion of the interface with other blocks. Every block in the block diagram must have its own description and each description should be 1-2 paragraphs in length.
    • Block Requirements: For each subsystem in your block diagram, you should include a highly detailed block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any interfaces with other blocks must be defined clearly and quantitatively. Include a list of requirements where if any of these requirements were removed, the subsystem would fail to function. Good example: Power Subsystem must be able to supply at least 500mA to the rest of the system continuously at 5V +/- 0.1V.
    • Risk Analysis: Identify the block or interface that poses the greatest risk to successful completion of the project. Justify your choice.
  3. Ethics and Safety
    Assess the ethical and safety issues relevant to your project. Consider both issues arising during the development of your project and those which could arise from the accidental or intentional misuse of your project. Specific ethical issues should be discussed in the context of the IEEE and/or ACM Code of Ethics. Cite, but do not copy the Codes. Explain how you will avoid ethical breaches. Cite and discuss relevant safety and regulatory standards as they apply to your project. Review state and federal regulations, industry standards, and campus policy. Identify potential safety concerns in your project.

Requirements and Grading

Please see the Proposal Grading Rubric for grading details. Please see Example Proposal as a guideline for document detail and length. (However, be aware that this proposal uses a rubric from previous years)

Submission and Deadlines

The Project Proposal document should be uploaded to My Project on PACE in PDF format before the deadline listed on the Calendar.

Filtered Back – Projection Optical Demonstration

Tori Fujinami, Xingchen Hong, Jacob Ramsey

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.

Hardware

• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings