Final Demo

Description

The Final Demonstration is the single most important measure of the success of your project. The evaluation is focused on issues of completion, testing, and reliable operation. You will demo your entire project to a team of one professor, your TA, and several peer reviewers. Other guests (e.g., alumni, high school students, donors) may, at times, also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project and any requirement in their Requirements and Verification table to the instructor. Credit will not be given for features which cannot be demonstrated. For tests that are lengthy or require equipment not available at the demo, students should have their lab notebooks ready to show testing data. For any portion of the project which does not function as specified, students should have hypotheses (and supporting evidence) of what is causing the problem.

The design team should be ready to justify design decisions and discuss any technical aspect of the project or its performance (not just one's own responsibilities). Quantitative results are expected wherever applicable. See the Demo Grading Rubric for specific details, but in general, show the following:

  1. Completion: The project has been entirely completed.
  2. Thoroughness: Care and attention to detail are evident in construction and layout.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.
  5. Complexity: A multiplier will be applied to your score reflecting the complexity of the project. This multiplier is between 0.5 and 1.

Submission and Deadlines

Sign-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review, as well.

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos