Meeting with Your TA


By the Thursday of the third week, you must have a project approved, and should be ready to get working! At this time, you'll need to log into PACE and submit your schedule for the semester. Please be sure to make this as accurate as possible because once it's submitted, it can only be changed manually. Making a block of your schedule red means that you are unavailable during that time.

Once each person on your team has submitted their schedule, your TA will be able to easily check for available times to schedule a weekly meeting. Your TA should contact you, usually by the fourth week, via email, to set up a weekly meeting schedule at mutual convenience. During the first weekly meeting, your TA will assign your team a locker and a lab kit.

Weekly meetings with your TA are required and will be held throughout the entire semester until demonstrations are completed. Your TA is your project manager. The "homework" of the course consists of preparing for the weekly meetings. Your TA will evaluate your lab notebook each week, provide feedback, and recommend improvements. At each meeting you will be expected to present your progress since your last meeting, plans for the coming week, and any technical or administrative questions you need to discuss with your TA. You are expected to arrive on time and prepared to make good use of your time with your TA. Your TA may require that each team member to fill out the Progress Report Template and submit it to them prior to each weekly meeting.

Requirements and Grading

Attendance and participation in weekly meetings is required and will affect Teamwork and Lab Notebook scores. If you can't make it to a particular weekly meeting, it is your responsibility to inform your TA prior to the meeting time and set up an alternate time.

Submission and Deadlines

Your schedule must be submitted by the end of the third week of class and you will receive an email from your TA shortly after. Your first meeting with your TA should be during the fourth week of the semester.

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project


Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.



Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.



1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts



Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos