Requirements and Verification


Requirements: Requirements provide a technical definition of what each and every block in your system block diagram must be able to do. Each module in your system's block diagram should be associated with a set of requirements. If all requirements have been met for every module, you should have a fully functioning project. A good set of requirements should meet the following criteria.

Verification: Verifications are a set of procedures that you will use to verify that a requirement has been met. Every requirement should have a verification procedure associated with it. Good verification procedures will meet the following criteria.

Remember, a good R&V table should function like a debugging checklist.

Points Summary: At the time of demo, 50 points will be defined by the R&V table for your project. It is up to you to define how important each requirement is and how many points it will be worth. If your project is not fully functioning at the time of demo, these points will define how you will earn partial credit. If you do not provide a points summary or define one poorly (e.g., by giving too many points to a trivial requirement) the course staff reserve the right to define the points for your requirements without your input. The point summary should be organized as a table separate from the R&V table where the points are distributed across each functional block in your block diagram. Meeting the requirements for that block will then represent earning those points. If desired, you may define how many points each individual requirement is worth but this is not required.

This point allocation should initially be proposed by the students themselves with TA approval and finally instructor approval at DR. This point allocation must be printed and brought to the demo at the end of the semester. Changes must be approved by the instructor. Here is an example.


You can view example R&V tables in the sample Design Review documents: Good Sample DR and a Poor Sample DR. It is also helpful to examine the points summary example and a good example R&V table as it was presented in a final report.

A note about formatting: Requirements and Verification are best organized into a table and organized by functional block. If each module of your project has several requirements, you may want to create an R&V table for each block separately. Each row of your R&V table should have one requirement (in one column) and the corresponding verification procedure (in another column).

Submission and Deadlines

Requirements and Verification will be included in your Project Proposal, Design Review Document and you will receive feedback and suggestions for improvement. Changes to your R&V table made after design review must be approved by your TA. Changes made after Mock Demo will not be approved with the exception of extreme circumstances.

Unapproved changes to the R&V table that are presented at the Final Demo may be penalized up to 50 points (the total associated with R&V).

Filtered Back – Projection Optical Demonstration

Tori Fujinami, Xingchen Hong, Jacob Ramsey

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.


• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings