Final Report

Video Lecture

Video, Slides

Description:

The Final Report Guidelines are the primary reference document for this assignment.

Requirements and Grading:

The Final Report is held to professional standards of language and format and is evaluated by staff in the ECE Editorial Services, who also check theses and dissertations for the department. The report is also evaluated for technical content and organization by the course staff. The Grading Rubrics are available for both English/Formatting and Technical Content, but here are some pointers:

  1. If you didn't click the link above, the Final Report Guidelines should be your first stop.
  2. Use a template to help get the formatting right (Microsoft Word template or LaTeX template).
  3. Since your Final Report is similar in purpose to a thesis, you may find the Thesis Writing Guidelines helpful for style and formatting.
  4. For citations, you may also find the IEEE Citation Reference guide useful.
  5. Please note the maximum number of pages (20) allowed for the final report. You will be penalized for going over the maximum number of pages and/or not following the prescribed format.
  6. Submission and Deadlines:

    The Final Report document should be uploaded to My Project on PACE in PDF format by the deadline on the Calendar.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos