Team Contract Fulfillment :: ECE 445 - Senior Design Laboratory

Team Contract Fulfillment

Description

The team contract fulfillment assignment is a document describing whether the obligations set out in the team contract were met. Project groups should write no more than 2 pages double spaced. This document should have five brief sections each of which corresponds to a section in the team contract:

Project Goals: This section should begin with a short description of what you planned on building at the start of the semester. What were the goals of your project? You should elaborate on whether these goals were met.

Expectations: This section should address whether the expectations set in the “Expectations” section  in your team contract were met. Essentially, were the ground rules your team set out at the start of the semester followed?
Roles: At the beginning of the course, your team outlined roles as part of the team contract. Please describe what your roles are now and–if your roles changed–how they evolved as the semester progressed. Did you assign a leader? Were pieces of the project tackled as a group or individually? Why?
Agenda: How did your team make decisions about the project? How were goals set? When an issue with the project came up, how did your team plan to fix it?
Team Issues: This section should cover team-related issues that your group encountered during the course. What sort of problems did you run into? How were they dealt with? Was the process set out in the team contract followed?  In hindsight could you have done things differently to have a better team experience?

Requirements and Grading

Each section is worth 4 points. Points are awarded based on thoroughness. A section that adequately addresses the questions above will receive 4 points.

Submission and Deadlines

The team contract fulfillment document is a group assignment and should be submitted on canvas before the deadline listed on the Calendar.

Covert Communication Device

Ahmad Abuisneineh, Srivardhan Sajja, Braeden Smith

Covert Communication Device

Featured Project

**Partners (seeking one additional partner)**: Braeden Smith (braeden2), Srivardhan Sajja (sajja3)

**Problem**: We imagine this product would have a primary use in military/law enforcement application -- especially in dangerous, high risk missions. During a house raid or other sensitive mission, maintaining a quiet profile and also having good situational awareness is essential. That mean's that normal two way radios can't work. And alternatives, like in-ear radios act as outside->in communication only and also reduce the ability to hear your surroundings.

**Solution**: We would provide a series of small pocketable devices with long battery that would use LoRa radios to provide a range of 1-5 miles. They would be rechargeable and have a single recessed soft-touch button that would allow someone to find it inside of pockets and tap it easily. The taps would be sent in real-time to all other devices, where they would be translated into silent but noticeable vibrations. (Every device can obviously TX/RX).

Essentially a team could use a set of predetermined signals or even morse code, to quickly and without loss of situational awareness communicate movements/instructions to others who are not within line-of-sight.

The following we would not consider part of the basic requirements for success, but additional goals if we are ahead of schedule:

We could also imagine a base-station which would allow someone using a computer to type simple text that would be sent out as morse code or other predetermined patterns. Additionally this base station would be able to record and monitor the traffic over the LoRa channels (including sender).

**Solutions Components**:

- **Charging and power systems**: the device would have a single USB-C/Microusb port that would connect to charging circuitry for the small Lithium-ion battery (150-500mAh). This USB port would also connect to the MCU. The subsystem would also be responsible to dropping the lion (3.7-4.2V to a stable 3.3V logic level). and providing power to the vibration motor.

- **RF Communications**: we would rely on externally produced RF transceivers that we would integrate into our PCB -- DLP-RFS1280, https://www.sparkfun.com/products/16871, https://www.adafruit.com/product/3073, .

-**Vibration**: We would have to research and source durable quiet, vibration motors that might even be adjustable in intensity

- **MCU**: We are likely to use the STM32 series of MCU's. We need it to communicate with the transceiver (probably SPI) and also control the vibration motor (by driving some transistor). The packets that we send would need to be encrypted (probably with AES). We would also need it to communicate to a host computer for programming via the same port.

- **Structural**: For this prototype, we'd imagine that a simple 3d printed case would be appropriate. We'd have to design something small and relatively ergonomic. We would have a single recessed location for the soft-touch button, that'd be easy to find by feel.

**Basic criterion for success:** We have at least two wireless devices that can reliably and quickly transfer button-presses to vibrations on the other device. It should operate at at *least* 1km LOS. It should be programmable + chargeable via USB. It should also be relatively compact in size and quiet to use.

**Additional Success Criterion:** we would have a separate, 3rd device that can stay permanently connected to a computer. It would provide some software that would be able to send and receive from the LoRa radio, especially ASCII -> morse code.