Project

# Title Team Members TA Documents Sponsor
45 Smart Portable Key
Aashay Shah
Akshay Chanana
Igor Fedorov design_document0.pdf
final_paper0.pdf
presentation0.presentation
proposal0.pdf
This project aims to build a smart secure portable electronic key. This key will be activated after verification from a finger print reader. After it goes through the fingerprint reader and gets activated, we will send an encrypted verification to the panel with switches for different locks to unlock. By pressing one of these switches, we will be able to then transmit a signal (via RF/Bluetooth) to the particular lock we require to open. This signal will have an encryption key that will prevent physical hacking as the receiver requires this key to get activated.
After successful verification of this key the respective lock will be able to click open. The locks that we will be using will have electric and mechanical locking components. This will be a really safe (and portable at the same time) option as there is no easy way to tamper with this kind of lock. If some unauthorized person tries to access the reader to open the lock, it will not send a signal. Thus if someone tries to put a high signal directly, the receiver will not get activated as the encryption key would not have been verified yet.
It will be our aim to make it as compact and marketable by the end of the project.

Logic Circuit Teaching Board

Younas Abdul Salam, Andrzej Borzecki, David Lee

Featured Project

Partners: Younas Abdul Salam, Andrzej Borzecki, David Lee

The proposal our group has is of creating a board that will be able to teach students about logic circuits hands on. The project will consist of a board and different pieces that represent gates. The board will be used to plug in the pieces and provide power to the internal circuitry of the pieces. The pieces will have a gate and LEDs inside, which will be used to represent the logic at the different terminals.

By plugging in and combining gates, students will be able to see the actual effect on logic from the different combinations that they make. To add to it, we will add a truth table that can be used to represent inputs and outputs required, for example, for a class project or challenge. The board will be able to read the truth table and determine whether the logic the student has created is correct.

This board can act as a great learning source for students to understand the working of logic circuits. It can be helpful in teaching logic design to students in high schools who are interested in pursuing a degree in Electrical Engineering.

Please comment on whether the project is good enough to be approved, and if there are any suggestions.

Thank you