SMART PORTABLE KEY

By

Aashay Shah

Akshay Chanana

Final Report for ECE 445, Senior Design, Spring 2013

TA: Igor Fedorov

1 May 2013

Project No. 45

Abstract

We have designed and implemented a wireless key and lock system that allows the user to wirelessly
access multiple locks. Our aim was to build a secure and portable device that is easy to use and carry
around.

The key consists of a fingerprint scanner, controller, RF transmitter and a panel of switches. After a
successful fingerprint scan, the controller activates the panel of switches following which the user can
choose which lock to open from the panel. Once the button is pressed the transmitter sends an
encrypted key to the lock side.

The lock consists of a RF receiver, controller and an electromechanical lock with a servo. Once the
encryption key is received, it is validated by the controller after which the servo is signaled to unlock the
device.

Our final design worked completely with the exception of the re-locking mechanism. We were able to
unlock multiple locks using one single key. The portability of the design was not as sufficient as needed
and there are many ways this issue is addressed as discussed in the conclusion.

Contents

IO [i oo [0 o o FP SRR 1
1.1 N S L= gl =] Fo ol S DI - =Y F SRR 1
1.2 21T [DT ol o) 1o o IR PSS 1

1.2.1 POWET SUPPIY (KBY) teeereeieeiiee ettt ettt e et e et e e e et e e e eate e e e e aabaeeeenbeeeeeenbeeeeenntaeeeennenas 1
1.2.2 POWET SUPPIY (LOCK) c.eeiiiieeteee ettt et e e e e ate e e e abae e e e earae e e entaeeeenneeas 2
A B o oY ={=T o o] T} Y=] =] N 2
1.2.4 PaN@l Of SWILCRES ..eiiiiiiie ettt s e e e e e e ae e e e st ee e s sabaeeesnteeeesareeas 2
1.2.5 IMICTOCONTIOIIEE ..ttt ettt sb e sb e sheeseeesatesate et e emeeenneen 2
1.2.7 RE TraNSCRIVET ittt be e s ab e e s s ba s e s s abae s 2
1.2.6 ElectromechaniCal LOCK.cocuiiiiiiiiieiiee ettt e s 2
1.3 Performance REQUITEMENTuiiiiie it eee ettt e e e e e e tar e e e e e e e e e satraaeeeaesesababeeeeaseeessssssaseaasesnnnsnns 2

B T2 =4 o N 4
2.1 POWET SUPPIY (KEY/LOCK) o.eerieerieeieete ettt ettt eb e eve b et be e baesteesbaestaesasesanenans 4
A Y= =14 o a T a L Aot [o] U= PP PPPPPPTPPPPPPPPRS 4
2.3 Panel Of SWITCN@S ..ottt s sttt et 6
B Y ol o Tolo T a1 o o] | =T PRSP TRPPRPT 7
2.5 RF TFANSCRIVEN «..eiieiitieee ettt ettt ettt e sttt e e sttt e s st e e s ambe e e e s st e e e s sabe e e e samreeessneeeessareeeesanraeeesanrneesaan eenans 8
2.6 ElectromechaniCal LOCK.coiuuieiiie ettt sttt st et e s s esbee e saneesaree s 10

R D 1o Fed I T o ok 4 (o o PRSPPI 11
3.1 Power Supply (Battery and VoItage regulator)cceeevieeeicciee e 11

3.1.1 Ripple Voltage Within Mitscccciiiiiiii e e e e e e e e e enees 11
BLL.2 CUITENT LIMIT oot e et e e s nre e s e e s nae e 11
3.2 Panel Of SWItCRES .. .eeieieee e sttt e s e b e e s bt e s b e s b e e e aneeesaree s 11
3.2.1 Debounced Circuit fOr SWILCNESeiiiuiiiiiee ettt s sre e 11
S I = LYol =T LY=o PP P PP PP PPPPPPPPPPPPP 12
G 0t Yool B = oV (= PP PPPPPPPPPPPPPPRE 12
I 0 =Y = = 1<) PSP PUPUPUPPPPPP 12
3.3.3 Communication speed is 9600 DPSuueiiiiiiiiciiiiiee e ercirree e e e ecrre e e e e e st e e e s e e s enrarreeeeeeenennes 12
Y Y= =T o T L Yot | o = Ut 12

3.4.1 Registration & Deletion of FINGErPrintsccccuiiiieciiie e 12

3.4.2 Verification of Registered FINGErPrint........ooccuiie i e e e are e e e are e e e enaaee s 12
3.4.3 Signal Verification TErmMINalcccuiiiiiceee et e e et e e e e e e e e arae e e e naeeean 13

RIS Y ol o ToloT oY f o] | =T U USSP TSP 13
3.5.1 Interface with Scanner & XBEe MOAUIESooiiiiriiiiiiiierieeeiee ettt sttt 13
3.5.2 Serial communication at 9600DPScccvriiiiiiiiieiiiiie ettt e saa e e e s araee s 13

BB LOCK ettt ettt et s b e et b e b e e bt e b e nh e e sheesheenae nhe e bt e nheenaeenaes 13
3.6.1PUISE Width TeST . .eeiiiiieiee e et re e e smne e snee e 13

L o 1 £ OO T PPPTTTON 14
L I S | o PP OO PPN 14
I o Yo | PRSP 14
i B o) - I 6 1 AR PP P RO U S US PP VPPRRPRPION 14

ST 6o [ol [V o] o H PSP PP PRPPP 15
LT I Xololo T o o] 1] oY 0=) £ SR 15
I A UL s [ol=T o - 110 1= TSP RST PRSPPI 15
5.3 Ethical CONSIAEIAtioNScc.eii ittt et s e st e st e e sabe e sabeesbeeesareesareean 15
LI U U Y o] o RSP 16
REFEIEINCES ... ettt ettt h e s bt e s ae e s ae e s bt e e et e e ae e et e et e e bt e bt e bt en s eabe e b e ereereen 17
Appendix A Requirement and Verification Tablecccueeeeiiirieciiie e 18
Appendix B Microcontroller UART COUE ...uuiiiiiiiiiiiiiieee e eecitte e e e e seectvtere e e s e e senteaee e e e s s e ennbaneeeeaesennssnnees 24
2 Y=o TN =T gl o o = - | o N 24
23 Y=Y o Vo LT g o oY= - o o [P PPPR 25

1. Introduction

This project was chosen because there are no devices presently available in the market that
allows the user to wirelessly access multiple locks used for general purposes. There is a high demand for
secure portable locks and this project aims to fulfill that need. The main focus is to provide a portable
and secure lock system with a smart key that can be used to unlock multiple locks wirelessly.

The key consists of a fingerprint scanner, controller, RF transmitter and a panel of switches as
shown in Figure 1. The lock consists of a RF receiver, controller and an electro-mechanical lock as shown
in the same figure. The basic design is summarized in the sections below.

1.1 System Block Diagram

[Power Supply - Battery]
Electro Mechanical

Finger Print Scanner foik s

Micro Controller Power Supply - Battery

Panel of Switches Micro Controller
RF RF
Transmitter Receiver
Key | Lock |

Figure 1: Detailed Block Diagram of the system implemented

1.2 Block Description
The project was divided into many modules, each with its own specific tasks and functions.
These are described below with their designs explained in detail in Section 2.0.

1.2.1 Power Supply (Key)

This is responsible for powering the entire circuit on the key side of the design which includes
the fingerprint scanner, microcontroller, panel of switches and the RF transmitter. Initially we were
planning on using AA batteries but then we changed our design and instead used a 9V battery with a
3.3V regulator.

1.2.2 Power Supply (Lock)

This is just like the supply on the key side. It is used to power the controller, RF receiver and the
servo on the electro-mechanical lock. The microcontroller should be able to send a signal to the
electromechanical component which will then implement the unlocking mechanism. It consists of a 9V
battery with a 3.3V and a 5V regulator. We need a steady 3.3V supply for the RF receiver and the
controller whereas the 5V is required for the servo.

1.2.3 Fingerprint Scanner

This is the security measure used on the design of the key module. It is used to record and verify
multiple fingerprints from users. Upon validation of the correct user it sends data serially over to the
microcontroller connected to it. The microcontroller then checks this data and on a successful validation
activates the panel of switches for unlocking the locks. We are using the 3.3V LEM-100 module by
Integrated Biometrics.

1.2.4 Panel of Switches

This panel consists of multiple switches that are directly used for unlocking the same respective
number of locks. This panel gets activated by the microcontroller after successful verification by the
fingerprint scanner. This is achieved by using multiple debounced push buttons connected to the
controller’s digital pins.

1.2.5 Microcontroller

The microcontroller used is the Texas Instruments MSP430. This is the main control unit of the
both the key and the lock modules. The MSP430 is a good option as it has very low power consumption
as well as a low cost. It processes the data from the fingerprint scanner to validate that it has read the
right fingerprint and only then activate the panel of switches after which an RF signal will be transmitted
to a particular lock. Another microcontroller is also present on the lock side to process the incoming
signal and then initiate the unlocking mechanism.

1.2.7 RF Transceiver

The key also consists of a RF transmitter, and the lock of a RF receiver to implement the wireless
communication between the two components of the design. Thus making use of RF will also let us
unlock the device from a distance. This communication module relays data to and from the
microcontroller on both, transmit and receive side. We used the XBee RF transceiver to achieve this
functionality.

1.2.6 Electromechanical Lock

The electromechanical component on the lock should be implemented such that it clicks open
on receiving the correct signal from the controller. The controller sends a PWM signal to the servo on
the lock which in turn unlocks it.

1.3 Performance Requirement

¢ Battery life should be long and thus overall efficiency of power supply should be more than 50%.
 Voltage regulators should efficiently provide a steady 3.3V and 5V supply.
¢ Instantaneous response after triggering switch on panel.

 Fingerprint scanner holds multiple users.

¢ Fingerprint scanner relays data to microcontroller correctly for validation.

* Microcontroller should be able to activate the panel of switches within a reasonable delay.
¢ Panel of switches should be properly debounced.

¢ Microcontroller should be able to successfully send an encryption key.

* Able to accurately transmit and receive within a certain range (~ 100m).

¢ Able to rotate servo after providing the required PWM signal.

2 Design

The final design procedure and details are described in the sub-sections below based on what
we mentioned in our Design Review [1].

2.1 Power Supply (Key/Lock)

A 9V battery is used for both the key and the lock components. On the key side the battery is
used with a 3.3V regulator (UA78M33) as all the components run on the same supply voltage. On the
lock side the battery is used with a 3.3V (UA78M33) and a 5V (L7805) regulator. The 3.3V is necessary
for the controller and the RF receiver whereas the 5V supply is needed for the servo on the
electromechanical lock.

Power Budget: After the calculations below we can successfully say that the 9V battery will be sufficient.

XBee RF Transceiver (1ImW): TX peak Current 45 mA @ 3.3V
RX Current 50 mA @ 3.3V
Power down Current < 10 uA
Max Power needed = 3.3*0.05 =0.165 W

LEM100 Fingerprint Scanner: Typical voltage = 3.3V, maximum voltage =3.8 V
Supply current - Idle state = 118 mA
Enrollment state = 178 mA
Identification state = 170 mA
Deletion state = 178 mA
UART baud rate = 9600 bps
Max Power needed = 3.8%0.178=0.6764 W

TI MSP430G2 Microcontroller: Max current = 60 mA
Voltage = between 1.8 Vand 3.6 V
Max Power needed = 0.06*3.6 =0.216 W

Max Power Used by any component = 0.6764 W
Total Power Used = 0.216 + 0.6764 + 0.165 = 1.0574 W
Total Power that we have =9 * 0.178 = 1.6 W > Total Power Used

2.2 Fingerprint Scanner

We are using the 3.3V LEM100 scanner from Integrated Biometrics. The module can perform
storing, identification and deletion of fingerprints using one of the best algorithms one can find in the
market today. It is quite a compact module and is very easy to integrate in our system. It comes with an
in-built memory system as shown in the block diagram for LEM100 in Figure 2. The scanner comes with
a main board and a sensor board as shown in Figure 3.

—s
CPLD i
| LE Sensor

Cis

EL Driver
J4{4 Pins)
[Ext Connector
—
Main Board Sensor Board

Figure 3: LEM100 Module Board [2]

The sensor board is connected to the main board through the J2 connector. We mainly use the

J3 4-pin connector to interact between the controller and scanner. J3 contains pins for: VCC, GND, TXD,
and RXD as shown in Figure 4.

@)
f|
(+]
+]
[+]
@]

nIm AR
1
\ R
52
B mumnIeenIEE
ool

Figure 4: J3 connector LEM100 Module Board [2]

The TXD is used to transmit the data from the scanner to the controller and the RXD is used to
receive data from the controller. The communication protocol for the LEM100 is described below in

5

Figure 5. The packet data has a start of packet byte followed by 2 bytes of which command, some
reserved bytes, error code and finally 1 byte to signify end of packet.

- Packet Data
@ @ @ ®@ ©® @ ® @ ®
STX Command Address " NG e Error Code Ccs ETX

1) Equals to 0xF1 and means beginning of transmission packet. (1 byte)

2! Property of code for a specific execution. (2 byte)

3) Code for a specific execution. (2 byte)

4) Comma (,) differentiate Command/Address from its parameter division. (1 byte)
5! Parameter applied by transmission Command/Address policy.

6 Value verifies integrity of data. (2 byte)

7' Equals to 0xF2 and means ending of transmission packet. (1 byte)

Figure 5: LEM100 Communication Protocol [2]

The control signals sent and received by the controller to/from the scanner are shown in the
figures below. The control signal to the scanner basically consists of the command to accept and verify a
fingerprint with the ID 1111 as shown in Figure 6. This ID had already been registered before the
communication started in the scanner memory. Once the scanner checks for a fingerprint, it responds
back to the controller with a signal as shown in Figure 7. If it successfully validates the scan, then we get
the “OK, 0” bytes in the packet. For no scan or not validated we get a “NG” (No Good) or “OK , 1” bytes
respectively.

1byte 2byte 2byte 1byte dbyte 2byte 1byte
STX MD_EXEC MD_VERIFY_USER , ID cs ETX
0xF1 02 09 2C 1M1 6A OxF2

Figure 6: Control signal sent from Controller to Scanner

1byte 2byte 2byte 1byte | 2byte | 1byte | 1byte | 1byte | 1byte | 2byte | 1byte
STX | MD_EXEC MD_VERIFY_USER , OK . Result , Flag | CS | ETX
0xF1 02 09 , OK , 0 , XXX 0xF2

Figure 7: Control signal received at Controller from Scanner

2.3 Panel of Switches

This consists of three switches that are directly used for unlocking the same respective number
of locks. This panel gets activated by the microcontroller after successful verification by the fingerprint
scanner. Once activated, this panel allows the user the option of unlocking any of the three switches.
We have push button switches for each of the locks, which on pressing tells the controller to transmit a
RF signal with some encryption to the receive side on the lock. These three switches are connected to

the controller’s digital ports and whenever the controller witnesses a high signal, it sends the signal to
the required lock using the RF transmitter.

Since we are dealing with push buttons the issue of bouncing comes into play. Thus these
switches need to be debounced properly. A simple debouncing circuit is shown in Figure 8 which helps
us make the circuit perform smoothly with no bouncing as shown in our testing in Figure 14 under
Section 3.0.

Figure 8: A simple debouncing circuit

2.4 Microcontroller

The microcontroller used in the design is the Texas Instruments MSP430G2553. This will be the
main control unit on both the key and the lock sides. Thus this control unit in our design basically has to
send and receive data, to and from, all other devices. The basic flow of information is captured in the
flowcharts shown below in Figure 9 with the sender and receiver controller code shown in Appendix B.
We used Code Composer Studio and the MSP430 Launchpad to basically test out and code our
controller.

Send uC
verification kev

No

Yes

X Send signal to uC Lock opens
= . for verification
Enable panel of RF transmitter
switches sends signal

Wait for switch to uCsend command
beprassad to RF transmitter

Does electro
mechanical
lock raceive
signal?

Verification
succassful?

Send signal o uC
according to the
switch that was

pressed

uC chacks for Sand the signal to
which lock to opm correct lock

Figure 9: Flowchart of Controller Functionality on the Key (left) and Lock (right) sides

A big factor in our design was to implement a secure key so that there was no chance of any
physical hacking possible. To tackle this issue, we had a 2 byte encryption key which was known to both
the transmit and the receive side, such that whenever a transmission takes place with this key it gets
verified every time for safety. This is not the best way to provide encryption, but with the time we had
this is what we got working. Another way which would be harder to hack was to provide an encryption
key based on the real time clock that was synchronized between the two ends as discussed in our

conclusion.

2.5 RF Transceiver

The RF transceiver we are using is the XBee 1mW Trace Antenna - Series 1 (802.15.4) that works
on the ZigBee protocol. Once the button is pressed on the panel of switches, the RF transmitter sends
the corresponding frequency with the encryption key provided by the controller. The frequency would
be the one matched with the lock the user wants to open. On the lock side when the RF receiver gets
this message, it conveys it to the controller which validates the encryption key. Once this key is validated

the controller sends a PWM signal for the unlocking mechanism to get activated on the lock. The RF
module and controller interface is shown below in Figure 10.

CMOS Logic (28 3.4) - CMOS Logic (28 34V)
DI {data) _ Dl (datain)
CTs 1 TS
¢ XBea XBea P
Wm‘mlmm Module Moddle mlmw[.’hmm
i /s

Figure 10: Microcontroller interface with XBee Transceiver [3]

An asynchronous signal is introduced in the module through the Data-In (DI) pin and is idle high
when no signal is transmitted through it. The data transmits as 8 bits where the first bit is the Start/Stop
bit. When the signal is low, the data starts transmitting into pin DI and when it becomes high it stops.
The process is shown in Figure 11.

Least Significant Bit (first) ['_ﬂ__._\

1dte (high) 1 1 1 1 1 © o o .
\ UART Signal

N
—t

Signal 0 veC = l
Voltage it {
L

—J -
Start Bit (low) Stop Ba (high)
Time >

Figure 11: UART data packet as transmitted through RF module [3]

During the time that the RF transceiver doesn’t operate, it works in the idle mode. Otherwise, it
supports four different modes of operation as shown in the Figure 12 below. The modes used in this
project are the - transmit, receive and idle modes.

Figure 12: Modes of operation for the RF Transceiver [3]

Vo]

2.6 Electromechanical Lock

The lock was designed and built by the ECE Machine Shop professionals. It consisted of the
Hitec-HS311 servo as the electromechanical portion of the lock. It had three connectors: supply voltage
pin (5V), ground pin and the PWM signal pin. The controller is used to rotate the servo and thus start the
unlocking process when necessary. There is a switch on our lock circuit as well that locks back the servo
to the original position. For safety purposes, once the lock has been unlocked the user has to first lock it
in order for him/her to unlock it again. Hence it reduces the chance of the servo malfunctioning.

We had to rotate the servo only by 90 degrees to unlock it and then provide the same PWM
signal in reverse to unlock it as shown in the figure below.

e LTI)

= "PuseWwidth1 ms
of

PO B By Y)

PulseWidth1.5ms

wimrie T LT (e

~\ “PuseWidth2ms

Figure 13: Servo Positioning [5]

10

3. Design Verification

3.1 Power Supply (Battery and Voltage regulator)

3.1.1 Ripple Voltage within limits

Before using the voltage regulator in the circuit, it was tested using an oscilloscope for any ripple
voltage. If the voltage increases too much by chance, the circuit could get damaged. A 9V battery was
connected to each of the voltage regulators and the output was connected to the oscilloscope. The
oscilloscope showed that the output from both the regulators was within limits of £0.5V. This case
worked for the 5V and the 3.3V regulators.

3.1.2 Current Limit

To prevent reverse current, in case the battery is connected with reverse polarity, a diode was
tested. This diode was placed in series with a resistor and current was supplied on the negative side of
the diode. Then the current flowing through the resistor was checked on the oscilloscope. It was found
that there was no current flowing through it.

3.2 Panel of Switches

3.2.1 Debounced Circuit for Switches

A circuit using a simple SR latch for debouncing was designed. This is shown in Figure 8.
Oscilloscope tests were done using the debounced circuit and without it. The results found are shown in
Figure 14. Debouncing was important as it could have sent many signals to the receiver on one push of a
button.

- b e e bt

P meipyinpmpa Wy n!l sl i

Figure 14: Before & After Debouncing

11

3.3 RF Transceiver

3.3.1 Accuracy test
This was verified by sending the signal multiple times and checking for failure at the receiving
end. It was checked 50 times and it did not fail even once ensuring 100% transmission and retrieval.

3.3.2 Range test
This test was done by trial and error. The distance between the transmitter and the receiver was
increased slowly till the signal no longer reached the receiver. This distance and time taken is shown

below.
Distance (meters) Time (sec) Pass/Fail
20 <1s Pass
40 <1s Pass
60 <l1s Pass
80 ~1s Pass
92 oo Fail

3.3.3 Communication speed is 9600 bps

This speed was set using the CoolTerm programmer software and was tested by connecting the
XBee and the microcontroller. Then 1kB of data was transferred and was found that the speed was
around 9600bps.

3.4 Fingerprint Scanner

3.4.1 Registration & Deletion of Fingerprints

Multiple (~50) fingerprints were scanned and stored in the module successfully. We were able
to delete all of the fingerprints as well. Control signals were sent to do the above and also an Emulator
program was used to test out the same.

3.4.2 Verification of Registered Fingerprint

Different fingerprints were verified successfully after issuing a control signal from the
microcontroller to the scanner. The controller received a control packet back letting it know if it was a
successful scan or not. Based on the packet contents, we verified that the scan is successful and we
enabled the panel of switches. The control signals are shown in Figures 6 & 7.

12

3.4.3 Signal Verification Terminal

At first we were using the emulator program to register and delete fingerprints using a USB
connection to the computer. But after integrating the scanner with the controller, it was really
important to look at if the right packet was being sent and received. Thus we set up a connection from
the computer to an Arduino microcontroller to use as a debug tool between our controller and scanner,
to figure out if our program was doing the right thing. Later we moved on to using the LEM100
Development kit to do the same.

3.5 Microcontroller

3.5.1 Interface with Scanner & XBee Modules

Multiple control packets for initialization, registration, verification and deletion were sent and
the packets received back provided a successful result of the same. The UART interface is used to carry
out this communication.

The same test was done with the XBee module. Control signals were successfully sent to the
XBee which enabled it to send data over to the receiver which was verified by a simple LED test. For the
final design we had the controller send an encrypted key over the transmitter, after a successful scan,
which got validated at the receiver end.

3.5.2 Serial communication at 9600bps

Data packets were communicated to and from, between the controller and a computer to test
the communication speeds. Multiple packets of 1kB were transmitted and checked for completion and
speeds. Perfect packet retrieval at a speed of 9600bps was achieved.

3.6 Lock

3.6.1Pulse Width Test

To check which way the servo turns, a PWM signal was generated using the microcontroller.
When the pulse width was 1.5 milliseconds it moved to a 90 degree position rotating clockwise. When
the pulse width was 1 millisecond it moved back to the O degree position rotating anti-clockwise. This
was all set up on the breadboard and tested using an oscilloscope to validate the right PWM signal.

13

4. Costs

4.1 Parts
Table 1: List of Parts [1]
Part Manufacturer Price/Unit | Quantity Total
MSP430 Microcontroller TI-430G2 $5.89 4 $23.56
Fingerprint Scanner Integrated $180 1 $180
Biometrics-LEM100
XBee RF Transmitter/Receiver Digi- ImW Trace S22 3 S66
Antenna - Series 1
(802.15.4)
UA78M33 Voltage Regulator Tl $1.43 6 $8.58
L7805 Voltage Regulator Tl $1.5 3 $4.5
AA Battery Pack Energizer $2.95 2 $5.9
Breakout Board XBee Sparkfun $2.3 3 $6.9
Header Pins ECE Store $0.15 10 S1.5
LED ECE Store $0.10 4 S0.4
XBee Header Pins Sparkfun $1.2 $9.6
Servo ServoCity $5.25 2 $10.5
Deadbolts Kwikset $20.25 2 $40.5
Resistors ECE Store S0.3 10 S3
Parts Total $360.94
4.2 Labor
Table 2: Labor Breakdown [1]
Group S/Hour | Hours/Week Number of Multiplier Total/Person
Member Weeks
Aashay 30 15 12 2.5 $13500
Akshay 30 15 12 2.5 $13500
4.3 Total Cost
Table 3: Finalized Total Cost [1]
Labor Cost $27000
Parts Cost $360.94
Total Cost $27360.94

14

5. Conclusion

5.1 Accomplishments

The design worked as per what was proposed. The fingerprint scanner module was integrated
with the microcontroller. The fingerprint scanner also successfully added additional users and was able
to remove existing ones. The correct input was detected by the fingerprint scanner based on whether
the users were registered. The microcontroller was able to send an encryption key via the XBee unit to
the lock. On the receiving side the microcontroller was able to validate the correct encryption key and
was able to generate the correct PWM output for the servo to turn clockwise such that it unlocks the
deadbolt. The RF module could catch the encrypted signal up to a distance of 100m. The transmission
and receiving of packets on the RF transceivers were 100% completed every time with very minimal
chance of packet drop. Also, as the switches were debounced the RF module never transmitted multiple
times on one button press.

5.2 Uncertainties

The main uncertainty we encountered was that the controller did not have an algorithm to send
a different real time encryption key to the receiving side. This makes it a little easier to physically hack
the device. Another uncertainty encountered was that the servo did not perform the lock function when
the user pushed a button. The microcontroller sends a reverse PWM signal such that the servo turns
anti-clockwise which locks the deadbolt. This we found later was a result of insufficient power delivered
to the servo when the switch is pressed. When this function was performed on the breadboard with a
bench power supply it worked perfectly and we were able to rotate the servo in both directions.

5.3 Ethical considerations
Table 4: IEEE Code of Ethics Relevance [1]

IEEE Code of Ethics
“1. to accept responsibility in making decisions

Relevance in Design
The purpose of the project is to make a

consistent with the safety, health, and welfare
of the public, and to disclose promptly factors
that might endanger the public or the
environment;”

secure lock and key system such that the

user can keep their important documents
safe. This feature of the device helps the

user feel safe about their belongings.

“3. to be honest and realistic in stating claims
or estimates based on available data”

Only the authorized user should be able to
open the lock and hence the accuracy of the
device is important such that no one else
tries to open the lock. While doing the
project every data taken will be reported
honestly even if it isn’t used.

“5. to improve the understanding of
technology; its appropriate application, and
potential consequences”

“6. to maintain and improve our technical
competence and to undertake technological
tasks for others only if qualified by training or
experience, or after full disclosure of pertinent

Once the project is done, the knowledge
about MSP430G2, UART, LEM 100 scanner
and the XBee RF transceiver would be
gained. This knowledge would help
understand these devices and would also
help gain technical competence.

15

limitations;”

“9. to avoid injuring others, their property, It should be made sure that the authorized

reputation, or employment by false or user is the only one allowed to use the key

malicious action;” and no one else would be able to. This
would help avoid any kind of theft or loss of
property.

“10. to assist colleagues and co-workers in We will readily provide assistance to

their professional development and to support | colleagues with their professional

them in following this code of ethics.” development and support them in their
code of ethics.

5.4 Future work

One of the first things we would do would be to get a PCB for the lock and key in order for it to actually
serve as a portable device that a user can carry around with ease. We already had it designed, but we
couldn’t physically get it made in time for our demo. To make the design more hack proof, we can have
an algorithm such that the RF module sends a different verification key every time the user wants to
open the lock. This can be achieved by having a real time encryption key generated on the transmission
and receive side with both sides being synchronized in order to do so. Electromechanical locks should be
designed such that tampering with the locks would not be possible. The user should be able to use the
key from long distances so that they can open the lock for someone else more easily if needed to be.
Further multiple keys can be replicated for more than one user.

16

References

(1]

(2]

(3]

(4]

(5]

(6]

Aashay Shah and Akshay Chanana, “Design Review — Smart Portable Key Team 45.” Available:
http://courses.engr.illinois.edu/ece445/projects/spring2013/project45 design review.pdf

"LEM100 Hardware Development
Manual."Https://integratedbiometrics.zendesk.com/attachments/token/dObtaf2e6bsrvwt/?name=L
EM100+Module+Hardware+Development+Manual+ En__Rev1.4.pdf. Integrated Biometrics, n.d.
Web.

"XBee®/XBee-PRO® RF Modules - 802.15.4 - v1.xEx
[2009.09.23]."Http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf. Digi
International Inc, 23 Sept. 2009. Web

“TI MSP430G2 Data Sheet.” Available: http://www.ti.com/lit/ug/slau318c/slau318c.pdf. Web.

"How Do Servos Work?" How Do Servos Work? Servo City, n.d. Web. 15 Apr. 2013.
<http://www.servocity.com/html/how_do_servos_work_.html>.

“MSP430 Hardware tools Users Guide.” http://www.ti.com/lit/ug/slau278l/slau278l.pdf. Web.

17

Appendix A Requirement and Verification Table
Module Requirements Verification Procedure
1. Fingerprint 1.1. Scanner management 1.1 The scanner will be tested
Scanner system should be able to using the J3 UART connection

record, detect existing
and delete stored
fingerprints.

a. Communication
interfaces should be
initially properly
working

b. Serial communication
speed should be set
optimally for
synchronization
between scanner and
controller.

c. Store new users that
will be able to
validate access to the
key

on the main board. The
scanner will interface with
the controller using this
connection.

a. Check to ensure

connection between
module and device are
well connected.

e Checkinput
power to module
~33V

e Check LED
blinking of
module after
turning on the
module

e Check serial
communication
interface LED of
module is
blinking.

b. Send 1 kB of data and

check the rate of transfer.

c. Tostart scanning

MD_START_CAPTURE is
sent to the module.
Multiple users (~5-10) will
be added by using the
MD_ENROLL_FP
command and then
checking for these
registered users in the in-
built memory as shown in
Figure 2.

18

d. Unauthorized users
should be denied
access

e. Existing users should
be removed on
request

f. On a successful scan
scanner should be
able to send a valid
data key to controller
for verification

d. Users will be identified
using the
MD_IDENTIFY_USER
command and verified by
sending
MD_VERIFY_USER.

e. Users will be deleted
using the MD_DELETE_FP
command and checking if
the digital output
associated with it receives
a high signal.

f. The scanner will send the
signal to the controller via
the UART interface. This
will be done about 10-20
times, to check if the
controller validates the
data sent by the scanner,
using the LED on the
controller to signal for
valid data received.

Power Supply
(Battery and
Voltage
Regulator)

2.1 Check if voltage regulator
gives the correct output
that is needed for the
fingerprint scanner.

2.2 Supply rated voltage and
current.
a. 33105V

2.1

2.2

To test the voltage regulator
(MI1C5219) a small circuit
would be made and different
resistor values would be used
to see if the given output is
the required one (3.3+ 0.5 V).
These results would be
checked using an oscilloscope.
This voltage regulator would
be used for the
microcontroller and the
fingerprint scanner.

a. Using an oscilloscope, the

voltage will be tested on
the power supply. This is
very important to check
every time as the
fingerprint scanner cannot
take voltage above 3.6V or
less than 2.7 V.

19

b. Current doesn’t
exceed 118mA

b. This precaution is very
important because the
fingerprint scanner is
really expensive. A fuse
will be used here so that it
prevents it from getting
damaged. Also, a diode
will be kept such that the
scanner doesn’t get
damaged in case the
battery is reversed.

3.

Microcontroller
(Key)

3.1 Interface with the
fingerprint scanner works
with synchronization
a. Serial communication

speed set at 9600 bps
at all times

b. Verification key
received on a
successful fingerprint
scan

3.2 Detects the change of
state of any of the
switches on the switch

panel
a. Panel should be
debounced

3.3 Should be able to send a
correct signal via the XBee

3.1 The scanner will be connected
to the controller serially.

a. Controller will be setto a
default serial
communication speed of
9600 bps using the Code
Composer software. It will
be verified as described in
1.1 (b).

b. Atest program will be
written to ensure that the
correct verification key is
sent. This will be tested
20 times just to see if it
works correctly. When the
correct key is received an
LED will blink.

3.2 Panel switch be connected
and tested through the digital
ports of the controller
a. We will test the switch

interface by testing the
pins they are connected
to on the controller. Every
time we switch one on,
we will have a LED signal
that verifies this interface.

3.3 The XBee DIN pin will receive
information from the

20

module to the respective
lock after verification from
scanner completes and
one of the switches is on.

a. Wait for the user to
pick which lock to be
open

b. Once alock is picked,
sent signal through
the XBee using the
UART interface should
be to the right lock

controller necessary to signal
the respective lock

a. This waiting period will be
done by programming the
controller with a wait
function till one of the
pins connected to the
controller sees a high
signal. We will also
incorporate a time out so
as to not keep it always
on once the scanner is
successful. Time out will
be checked by leaving the
system alone and
checking if one of the
LEDs starts to blink.

b. After receiving the signal
from one of the switches,
send packet to XBee
controller based on the
XBee datasheet so as to
transfer to the right lock.
Tested fifty times and will
check for right lock by
using the controller on
the receive side. We will
store the message on the
controller and read its
memory using software
for validation of the
message received.

These tests will ensure that the
controller works well with each
component on the key.

4. Microcontroller
(Lock)

4.1 Receives a valid signal from

the XBee receiver and then
signals the electro-
mechanical lock

4.1 The RF receiver will have to
behave the same as the
transmitter interfaces with the
key controller. This is tested

21

the same way as described in
section 3.3.

Once the signal is validated,
we can output a high initially
to test an LED so as to know
that the signal passes the
verification and the lock can
now be unlocked. Multiple
tests will be done to check the
accuracy of this unlocking
mechanism.

5 Panel of Switches

5.1 The switches need to be
debounced such that it
resets after 1 second.

5.2 Ensure that the correct lock
receives signal when the
button is pressed.

5.1

5.2

This will be done using a
simple debouncing circuit and
will be checked using an
oscilloscope by pressing the
button thirty or so times. The
oscilloscope should show that
the button was hit thirty
times with perfect accuracy.
Also, the oscilloscope will give
a high output when the
button is pressed and it resets
after a particular time so that
the user can open another
lock by scanning the
fingerprint and activating the
panel of switches.

When the button is pressed
three LED’s will be put near
the receiver and whenever
the corresponding button is
pressed the correct LED
should light up.

6 RF Transceiver

6.1 Serial connection works
perfectly between XBee
and the controller

6.2 To ensure that it activates
when the correct

6.1

6.2

This will be verified by
connecting the transmitting
side and receiving side to
different computers (using
UART) and checking by
sending 2kB data and then
receiving it to ensure it works
90% of the time. It will be
tested 30 times and error
calculation will be done.

To ensure this, a test signal
will be received. LED’s will be

22

frequency is received.

6.3 Range test. Should be able
to communicate up to a
30m distance between the
transmitter and receiver.

6.4 All interfaces work at a
communication speed of
9600 bps. The transceivers
should do the same.

placed such that when the
correct signal is received,
they would turn on and when
an incorrect signal is sent it
stays off. This whole process
will be handled by the
controller and signals will be
sent manually to check on its
verification.

6.3 The range would be checked
by sending the signal in
different situations where the
distance between the
transmitted and received side
vary. We will send sample
test data using the controller
and we should be able to
receive data with 100%
integrity up to a distance of
30m.

6.4 This will be done the same
way as described in Section
1.1 (b) by connecting the
controller and XBee together
to exchange data at the
defined rate.

7

Lock

7.1 Ensure enough power is
there so that the lock
opens when it has to.

7.2 It snaps the lock when
signal is received.

7.3 The lock closes when the
user hits a push button.

7.1 Send a PWM signal via the
controller for clockwise
rotation to unlock

7.2 Different voltages from the
range of 5V-20V would be
given to the lock and would
be checked for which ones it
opens smoothly.

7.3 Reverse PWM for anti-
clockwise rotation using the
9V battery and regulators.

23

Appendix B

B.1 Receiver Program

/=

= ECE445 Spring 2013 - Team 45
* Receiver (Lock) Side Program
* Reference: http://homepages.ius.edu/RWISMAN/C335/HIML,/mep430Timer . HIN

* main.c
')

#include <msp430.h>
#include <msp430g2553.h>

void delay(veid):

void main(void){

WDICIL = WDTPW + WDTHOLD:

P1OUT = O

while (1) {

while ((P1IN & BIT3)

delay()
P1DIR |= BIT6:

P1SEL |= BITE:

TAOCCRO = 240;

TAOCCR1 = 28;

1= BIT3):

TAOCCTL1 = OUIMOD 7:

TAOCTL = TASSEL_1 + MC_1;

volatile unsigned long i:

i = 59999;
do (i--}:
while (1 != 0)

P1DIR “= BIT6:

while ((P1IN & BIT4)

delay():
P1DIR |= BITS&:

P1SEL |= BITE&:

TAOCCRO = 240;

TAQOCCR1 = 200;

1= BIT4):

TAOCCTL1 = OUIMOD_7:

TROCTL = TASSEL_1 + MC 1:

i = §3599;
do (i--):

while (i != 0):

P1DIR *= BIT6:

void delay(veoid) {
unsigned int count;
for (count=0; count<e&l
} // delay

Microcontroller UART Code

// Stop watchdog timer

// Detect 52 pressed

/! Green LED

// Green LED selected for Pulse Width Modulation

// PWM peried,

// PWM duty cycle,

12000 ACLK ticks or 1/second

time cycle on vs. off, on 10% inicially

// TAOCCR1 reset/set -- high voltage belew TAOCCR1 count
// and low voltage when past

// Timer A control set to submain cleck TASSEL 1 ACLK

// and count up to TAOCCRO mode MC 1

I/

Green LED off

// Detect 52 pressed

rf

Green LED

// Green LED selected for Pulse Widch Modulation

// PWM period,

// PWM duty cycle,

r
r

/"
I

'

12000 ACLK ticks or l/second

time cycle on vs. off,

on 10% inicially

TAOCCR1 reset/set -- high voltage below TAOCCR1 count

and low voltage when pastc

Timer A control set to submain clock TASSEL 1 ACLK

and count up to TAOCCRO mode MC 1

Green LED off

24

B.2 Sender Program
/* ECE445 Spring 2013 - Team 45
* Sender (Key) Side Program

* Reference: http://longhornengineer.com/code/MSP430/UART

* main.c
*f

#include <msp430.h>
#include "msp430g2553.h"
$include "uart.h"

f#define MD_EXEC 0x02
f#define MD_VERIFY GROUP 0x11

$define BUTTON BIT3
#define LED1 BITE

char STX[8] = "11110001";
char ETX[B8] = "11110010";

int main(veoid)
{
//Initialize Flag for Switch P1.3
pl 3 =20;
WDTCTL = WDTPW + WDTHOLD;
BCSCTL1 = CALBCl_BMHZ;
DCOCTL = CALDCO_B8MH3Z ;

uart_init();

I

//8TX OxF1
//8TX = OxF2

//Stop WDT
//Sest DCO to BMhz
//Set DCO to 8Mhz

//Initialize the UART connection

P1IE |= BUTTON; // P1.3 interrupt enabled

P1IFG &= ~BUTION: // P1.3 IFG cleared
P1IES = 0;

__e=nable_interrupt():
while (1){
if (pl_3 == 3){
---- // Delay
do (i--):
while (i 1=0):
P10OUT *= LED1;
Pl _3 = 0;
}
else if(pl 3 == 1)

int i=135000; // Delay

do (i--):
while (i 1=0):
char test_string[i5]:

//User Verification
uart_putc{0xFl);

uart_puts((char #*)"0208,11118B");
uart_putc({li=Fi);

uarc_gecs(cesc_scring, 15):

//Interrupts Enabled

if(vesc_scring[f] == '0' && test_sctring[7] == 'H' && test_scring([d) == '0'){

P1DIR |= LED1:
P1OUT |= LED1:
P1_3 += 1;
} else pl 3 = O;
PLIFG = O:

//P1.6 red LED
//LED off

25

=
* uart.h

*/

#ifndef UART_H_
#define UART_H_

/*rx_flag

* This flag is to be used by other modules to check and see if a new transmission has happened.
* This is READ ONLY. Do not write to it or the UART may crash.

wf

extern volatile unsigned int rx flag:

/*pl_3 flag

* This flag is used to tell the program that the switch has been pressed and it is ready to send
* the signal to the scanner

*f
extern volatile unsigned int pl_3: //Flag for when P1.3 is pressed

/*uart_init

* Sets up the UART interface wvia USCI
* INPUT: None

* RETURN: None

*/

void uart_init(void):;

/*uart_getc

* Get a char from the UART. Waits till it gets one
* INPUT: None

* RETURN: Char from UART

'

unsigned char uart_getc():

/*uart_gets

* Get a string of known length from the UART. Strings terminate when enter is pressed or string buffer fills
* Will return when all the chars are received or a carriage return (\r) is received. Waits for the data.

* INPUT: Array pointer and length

* RETURN: Neone

*f

void uart_gets():

/*uarc_putc

* Sends a char to the UART. Will wait if the UART is busy
* INPUT: Char to send

* RETURN: None

o

void uart_putc(unsigned char c);

/*uart_puts

* Sends a string to the UART. Will wait if the UART is busy
* INPUT: Pointer to String to send

* RETURN: None

L7

void uart_puts(char *str):

gendif /= UART_H_ */

26

Jf-

" uart.c

~/

[finclude "msp430g2553.n"
f#include "uarc.h"

#define LED BITO

#define RXD BIT1

f§define TXD BIT2

#define LEDO BITO

#define LED1 BIT6

#define BUITON BIT3

volatile unsigned int tx_flag:
volatile unsigned char tx_char:
volatile unsigned int rx_flag:
volatile unsigned char rx char:
volatile unsigned int pl_3;

/*uart_inic

* Sets up the UART interface wvia USCI
* INPUT: None

* RETURN: None

ap

void uart_init(void)

{
P1SEL = RXD + TXD:
P15ELZ = RXD + TXD:
P1DIR |= LED:
P1OUT |= LED:
UCAOCTL1 |= UCSSEL_2:
UCAOBRO = 52;
UCAOBR1 = 0O
UCAOMCTIL = 0Ox10|UCCS16;
UCAOCTL1 &= ~UCSWRST:
IE2 |= UCAORXIE:
rx_flag = 0;
tx _flag = O;
return;

}

/*uarc_getc

//Mailbox Flag
//This char is

for
the

the tx_char.
most current

//Mailbox Flag
//This char is

for
the

the rx_char.
mOoSt current

//Flag for when P1.3 is pressed

//Setup the I/0

char to go into

char to come cut

//P1.0 red LED. Toggle when char received.

//LED off

/ /SMCLK

//8,000,000Hz, 9600Baud,
//8MHz, 0SCl6, 9600
//((BMHz/9600) /16) = 52.08333
//UCBRFx=1,UCBRSx=0, UCOS16=1
//USCI state machine

//Enable USCI_AO0 RX interrupt

//Set rx_flag to 0
//Set tx _flag to 0

* Get a char from the UART. Waits till it gets one

* INPUT: Hone
* RETURN: Char from UART

wff
unsigned char uart_getc()
{
while (rx_flag == 0):
rx_flag = 0;
return rx_char:
}

//Waits for a valid char from

//Wait for rx flag to be set
//ACK rx flag

27

UCBRx=52, UCBRSx=0,

the UART

UCBRFx=1

|/ *uart gects

* Ger a string of known length from the UART. Strings terminate when enter is pressed or string buffer fills
* Will return when all the chars are received or a carriage return (\r) is received. Waits for the data.

* INPUT: Array pointer and length

*= RETURN: None

7 4
void vart_gets(char* Array, int length)
I
unsigned int i = 0;
while({i < length)) //Grab data till the array fills
{
Array[i] = uart_gete():
if{Array[i] = '\r') //If we receive a \r the master wants to end
| {
for(: i < length ; i++) //£ill the rest of the string with \0 nul. Overwrites the \r with \0
| {
Array([i] = '"\0';
}
break;
}
i4+;
1
return;

|/ *uart_pute

* Sends a char to the UART. Will wait if the UART is busy
* INPUI: Char to send

* RETURN: None

nf

void uarc_putc(unsigned char c)

I
tx_char = c; //Put the char into the tx_char
IE2 |= UCAOIXIE: //Enable USCI_AQ TX interrupt
while (tx_flag == 1); //Have to wait for the TX buffer
tx_flag = 1; //Reset the tx_flag
return;

}

|/*uart_puts

* Sends a string to the UART. Will wait if the UART is busy
*+ INPUT: Pointer to String to send
* RETURN: None

~f
veid uart_puts(char #str) //Sends a String to the UART.
I
while (*str) uart_putc(¥str++); //Advance though string till end
return;
}
f#pragma vector = USCIABOTX_VECTOR //UART TX USCI Interrupt
__interrupt void USCIOTX_ISR(void)
I
UCAOTXBUF = tx_char; //Copy char to the TX Buffer
tx_flag = 0; //ACK the tx flag
IE2 &= ~UCAOTXIE: //Turn off the incerrupt to save CPT
}
#pragma vector = USCIABORX_VECTOR //UART RX USCI Inverrupt. This triggers when the USCI receives a char.
__interrupt void USCIORX_ISR(void)
I
rx_char = UCAORXBUF: //Copy from RX buffer, in doing so we ACK the interrupt as well
rx_flag = 1; //Set the rx flag to 1
P100T ~= LED: //Motify that we received a char by toggling LED
}

28

