Smart Portable Key

Design Review

ECE 445

TA: Igor Fedorov

Aashay Shah Akshay Chanana

Table of Contents

1.0 INTRODUCTION

.1 Statement of Purpose	2
.2 Objectives	
1.2.1 Goals	
1.2.2 Functions	
1.2.3 Benefits	
1.2.4 Features	

2.0 DESIGN

2.1 Block Diagrams	3
2.2 Block Descriptions and Flowcharts	
2.3 Schematics of System	
2.4 Calculations	13

3.0 REQUIREMENTS & VERIFICATION

3.1 Testing Procedures	
3.2 Tolerance Analysis	

4.0 ETHICAL ISSUES

5.0 SAFETY ANALYSIS

6.0 COST AND SCHEDULE

6.1 Cost Analysis	
6.1.1 Labor	
6.1.2 Parts	21
6.1.3 Grand Total	
6.2 Detailed Schedule	
6.0 REFERENCES	23

1.0 Introduction

1.1 Statement of Purpose

This project was chosen because there are no devices presently available in the market that allows the user to wirelessly access multiple locks used for general purposes. There is a high demand for secure portable locks and this project aims to fulfill that need. The main focus will be to provide a portable and secure lock system with a smart key that will be used to unlock multiple locks wirelessly.

1.2 Objectives

1.2.1 Goals:

- Develop a portable secure key that can unlock multiple locks
- Secure the key with a fingerprint scanner and enable encryption so as to prevent physical hacking by just sending a high signal
- Allow the smart key to access locks wirelessly
- Develop multiple locks with electric and mechanical components

1.2.2 Functions:

- Panel of switches to choose between different locks
- Wireless communication between transmitter and receiver
- Fingerprint scanner to validate smart key
- Microcontroller to validate encryption

1.2.3 Benefits:

- Instantaneous access to any of the locks
- Saves the hassle of carrying multiple keys or keys at all
- Physical hacking of the device not possible
- Portable and secure locking system

1.2.4 Features:

- Easy to use and carry around
- RFID communication modules for transmitter and receiver
- Reliable, secure and hack proof
- Long system life as it basically runs on batteries
- Cheap and fast access to the locked system

2.0 Design

2.1 Block Diagrams

Figure 1: Detailed Block Diagram of the key and lock system to be implemented

2.2 Block Description

The lock and key system shown above in Figure 1 will be implemented in this project with its components described below.

Power Supply (Key):

This will be responsible for powering the entire circuit on the key side of the design which includes the fingerprint scanner, microcontroller and the RF transmitter. We are planning on using a 9V Energizer battery with the MIC5219 voltage regulator to provide an overall constant 3.3V source.

Power Supply (Lock):

This will be just like the supply on the key side. It will be used to power the controller and the RF receiver. The microcontroller should be able to send a signal to the electromechanical component which will then implement the unlocking mechanism. The battery can be sufficiently bulky in contrast to the power supply on the key as it will not be carried around. Exact details are being worked out with the Machine Shop professionals. We will be using the same 9V Energizer battery as being used in the key.

Fingerprint Scanner:

This is the security measure used on the design of the key module. It is used to record and verify multiple fingerprints from users. Upon validation of the correct user it will send data serially over to the microcontroller connected to it. The controller will then check this data and further activate the panel of switches for further unlocking the locks.

We are using the 3.3V LEM 100 scanner from Integrated Biometrics. The module can perform storing, identification and deletion of fingerprints using one of the best algorithms one can find in the market today. It is quite a compact module and is very easy to integrate in our system. It comes with an in-built memory system as shown in the Block diagram for LEM 100 in Figure 2. The scanner comes with a main board and a sensor board as shown in Figure 3.

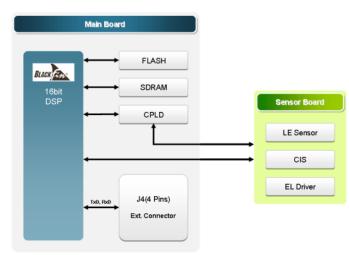


Figure 2: LEM 100 Block Diagram^[2]

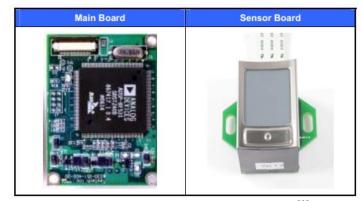


Figure 3: LEM 100 Module Board ^[2]

The sensor board is connected to the main board through the J2 connector. We will be mainly using the J3 4-pin connector to interact between the controller and scanner. J2 basically contains pins for: VCC, GND, TXD, RXD as shown in Figure 4.

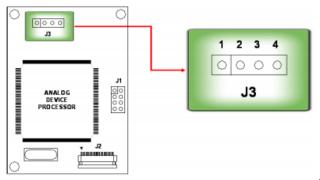


Figure 4: J3 connector LEM 100 Module Board ^[2]

The TXD will be used to transmit the data from the scanner to the controller and the RXD will be used to receive data from the controller. The communication protocol for the LEM 100 is described below in Figure 5. The packet data has a start of packet byte followed by 2 bytes of which command, some reserved bytes, error code and finally 1 byte to signify end of packet. Some of the basic commands and a summary of commands are also shown in Figure 6.

- Packet Data

0	2	3	٩	6	٩	6	Ø	8
STX	Command	Address	,	NG	,	Error Code	CS	ETX

① Equals to 0xF1 and means beginning of transmission packet. (1 byte)

2 Property of code for a specific execution. (2 byte)

3 Code for a specific execution. (2 byte)

④ Comma (,) differentiate Command/Address from its parameter division. (1 byte)

(5) Parameter applied by transmission Command/Address policy.

6 Value verifies integrity of data. (2 byte)

T Equals to 0xF2 and means ending of transmission packet. (1 byte)

Figure 5: LEM100 Communication protocol ^[2]

- Command			
Item	Binary	Char	Comment
MD_READ	0x00	'00'	Read a value from Module
MD_WRITE	0x01	'01'	Save a value to Module
MD_EXEC	0x02	'02'	Execute an instruction

- Command	Summary

Item	Binary	Char	Comment
MD_START_CAPTURE	0x03	'03'	Command for starting capture
MD_ENROLL_FP	0x04	'04'	Command for registering User
MD_DELETE_FP	0x05	'05 '	Command for deleting user
MD_DELETE_ALLFP	0x06	'0 6'	Command for deleting all users
MD_IDENTIFY_USER	0x08	'08'	Command for identifying a fingerprint (1 : N)
MD_VERIFY_USER	0x09	'0 9'	Command for verifying a fingerprint (1 : 1)
MD_IDENTIFY_USER_EX	0x19	'19'	Command for identifying a fingerprint(1:N)
MD_VERIFY_USER_EX	0x1A	'1A'	Command for verifying a fingerprint(1 : 1)

Figure 6: LEM100 Communication commands^[2]

Panel of Switches:

These will consist of three switches that are directly used for unlocking the same respective number of locks. This panel will get activated by the microcontroller after successful verification by the fingerprint scanner. Once activated, this panel will allow the user the option of unlocking any of the three switches. We plan on having button switches for each of the locks, which on pressing will tell the controller to transmit a RF signal with some encryption to the receive side on the lock. These three switches will be connected to the controller digital ports and whenever the controller witnesses a high signal, it will send the signal to the required lock using the RF transmitter.

Microcontroller:

The microcontroller used in the key module will be the Texas Instruments MSP430. This will be the main control unit of the module. The microcontroller will be powered by the power supply (key) and is a good option as it has low power consumption as well as a low cost. It will process the data from the fingerprint scanner to validate that it has read the right fingerprint and only then check for any activated switches on the panel after which an RF signal will be transmitted to the particular lock needed unlocking. Another microcontroller will also be on the receive side to process the incoming signal at the receiver and then initiating the unlocking mechanism.

The controller being the main control unit in our design basically has to send and receive data, to and from, respectively, all other devices. The basic flow of information is captured in the flowcharts shown in **Section 2.2**.

RF Transceiver:

The key will have a RF transmitter and the lock will have a RF receiver to implement the wireless communication between the two components of the design. Thus making use of RF will also let us unlock the device from a distance. This communication module will be able to relay data to and from the microcontroller on both, transmit and receive side.

The RF transceiver we will be using is the XBee 1mW Trace Antenna - Series 1 (802.15.4) that works on the Zigbee protocol. Once the button is pressed on the panel of switches, the RF transmitter will send the corresponding frequency. The frequency would be the one matched with the lock the user wants to open. For the RF receiver that is placed on the locks, the microcontroller would tell it to activate only when it receives its frequency and not any other.

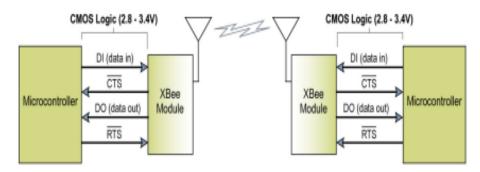


Figure 5: Microcontroller interface with XBee Transceiver^[1]

An asynchronous signal is introduced in the module through the Data In (DI) pin and is idle high when no signal is transmitted through it. The data transmits as 8 bits where the first bit is the Start/Stop bit. When the signal is low, the data starts transmitting into pin DI and when it becomes high it stops. The process is shown in Figure 6.

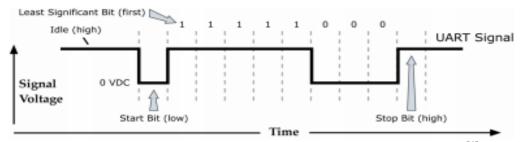


Figure 6: UART data packet as transmitted through RF module ^[1]

During the time that the RF transceiver doesn't operate, it works in the idle mode. Otherwise it supports four different modes of operation as shown in the Figure 7 below. The modes that would be used in this project are the - transmit mode, receive mode and idle mode.

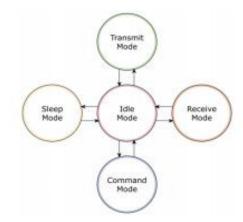


Figure 7: Modes of operation for the RF Transceiver^[1]

Electromechanical Lock:

The electromechanical component on the lock will be the module implemented to click it open on receiving the correct signal from the key. The controller will send a signal to the electric part which will in turn transform to a mechanical procedure that will help to unlock the device.

Key Process Flowchart

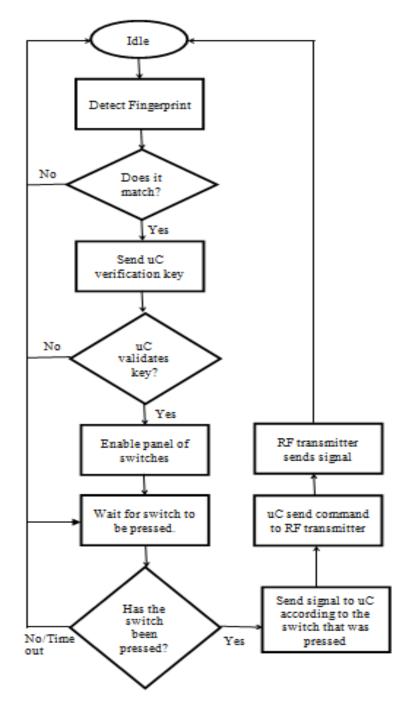
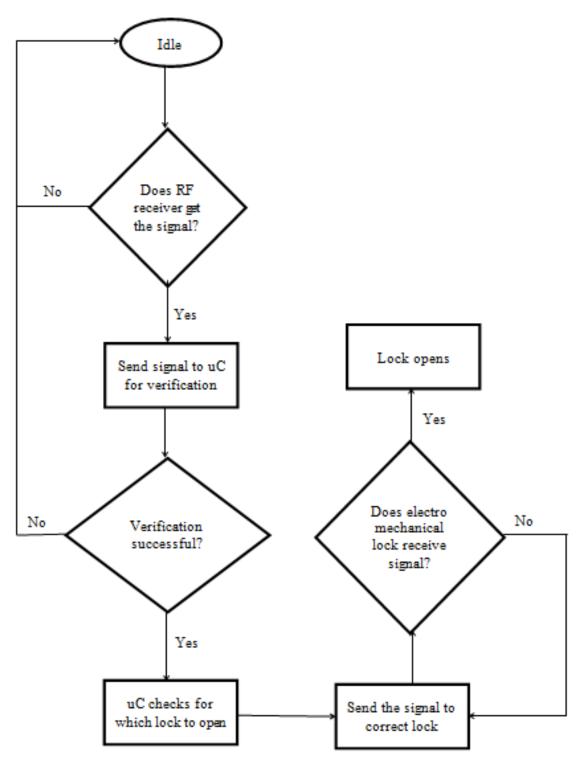
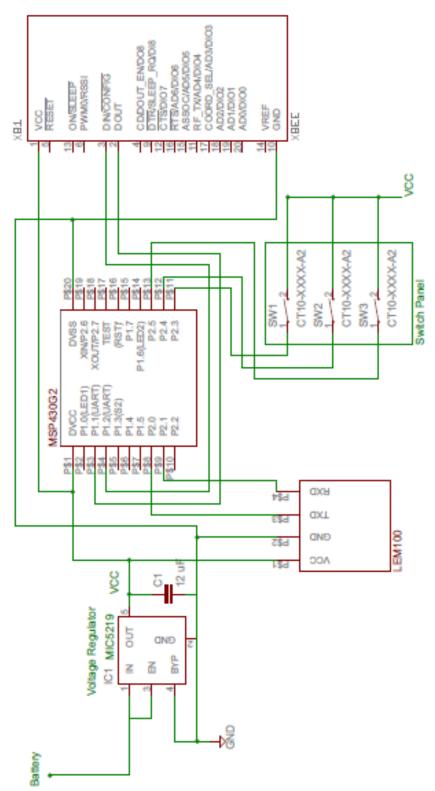
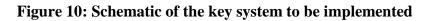
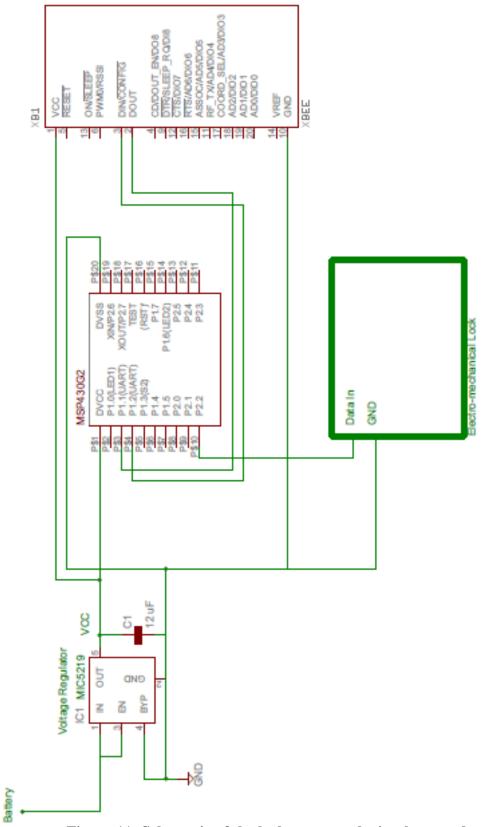
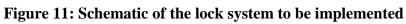


Figure 8: Detailed flow of the key system

Lock Process Flowchart


Figure 9: Detailed flow of the lock system

2.3 Schematics of system

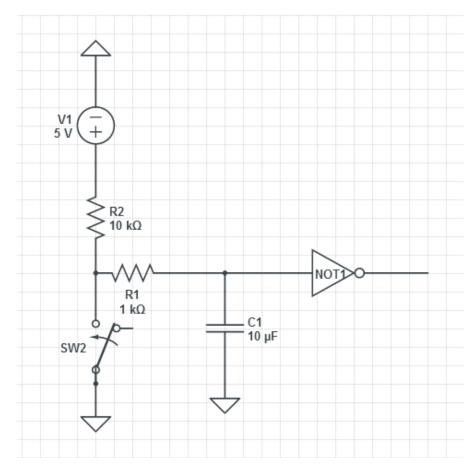
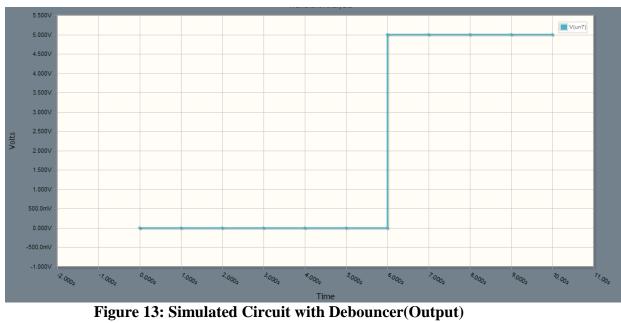



Figure 12 : Debouncing Circuit

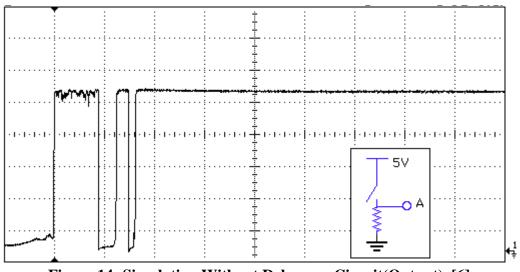


Figure 14: Simulation Without Debounce Circuit(Output) [6]

2.4 Calculations

XBee RF Transceiver (1mW) ^[1]: TX peak Current 45 mA @ 3.3 V RX Current 50 mA @ 3.3 V Power down Current < 10 uA Max Power needed = 3.3*0.05 = 0.165 W LEM100 Fingerprint Scanner ^[2]: Typical voltage = 3.3 V, maximum voltage = 3.8 V Supply current - Idle state = 118 mA Enrollment state = 178 mA Identification state = 170 mA Deletion state = 178 mA UART baud rate = 9600 bps Max Power needed = 3.8*0.178= 0.6764 W TI MSP430G2 Microcontroller ^[5]: Max current = 60 mA Voltage = between 1.8 V and 3.6 V Max Power needed = 0.06*3.6 = 0.216 W

Total Power Used = 0.216 + 0.6764 + 0.165 = 1.0574 W Total Power that we have = 9 * 0.178 = 1.6 W This shows that the power that is less than the power supplied. In the above calculation a 9V battery is used.

3.0 Requirements & Verification

3.1 Requi Module	Requirements	Verification Procedure		
1. Fingerprint	1.1. Scanner management system	1.1 The scanner will be tested using		
Scanner	should be able to record, detect existing and delete stored fingerprints.	the J3 UART connection on the main board. The scanner will interface with the controller using this connection.		
	 a. Communication interfaces should be initially properly working b. Serial communication 	 a. Check to ensure connection between module and device are well connected. Check input power to module ~ 3.3 V Check LED blinking of module after turning on the module Check serial communication interface LED of module is blinking. b. Send one kB of data and check 		
	speed should be set optimally for synchronization between scanner and controller.	the rate of transfer.		
	c. Store new users that will be able to validate access to the key	c. To start scanning MD_START_CAPTURE is sent to the module. Multiple users (~5-10) will be added by using the MD_ENROLL_FP command and then checking fo these registered users in the in- built memory as shown in		
	d. Unauthorized users should be denied access	Figure 2. d. Users will be identified using the MD_IDENTIFY_USER command and verified by sending MD_VERIFY_USER.		

2 1 Decuir

	 e. Existing users should be removed on request f. On a successful scan scanner should be able to send a valid data key to controller for verification 	 e. Users will be deleted using the MD_DELETE_FP command and checking if the digital output associated with it receives a high signal. f. The scanner will send the signal to the controller via the UART interface. This will be done about 10-20 times, to check if the controller validates the data sent by the scanner, using the LED on the controller to signal for valid data received.
2. Power Supply (Battery and Voltage Regulator)	2.1 Check if voltage regulator gives the correct output that is needed for the fingerprint scanner.	 2.1 To test the voltage regulator (MIC5219) a small circuit would be made and different resistor values would be used to see if the given output is the required one (3.3± 0.5 V). These results would be checked using an oscilloscope. This voltage regulator would be used for the microcontroller and the fingerprint scanner.
	2.2 Supply rated voltage and current.a. 3.3 ± 0.5 V	 2.2 a. Using an oscilloscope, the voltage will be tested on the power supply. This is very important to check every time as the fingerprint scanner cannot take voltage above 3.6V or less than 2.7 V.
	b. Current doesn't exceed 118mA	 b. This precaution is very important because the fingerprint scanner is really expensive. A fuse will be used here so that it prevents it from

		getting damaged. Also, a diode will be kept such that the scanner doesn't get damaged in case the battery is reversed.
3. Microcontro (Key)	scanner works with synchronization a. Serial communication speed set at 9600 bps at all times	 3.1 The scanner will be connected to the controller serially. a. Controller will be set to a default serial communication speed of 9600 bps using the Code Composer software. It will be verified as described in 1.1 (b). b. A test program will be written
	b. Verification key received on a successful fingerprint scan	to ensure that the correct verification key is sent. This will be tested 20 times just to see if it works correctly. When the correct key is received an LED will blink.
	3.2 Detects the change of state of any of the switches on the switch panela. Panel should be debounced	 3.2 Panel switch be connected and tested through the digital ports of the controller a. We will test the switch interface by testing the pins they are connected to on the controller. Every time we switch one on, we will have a LED signal that verifies this interface.
	3.3 Should be able to send a correct signal via the XBee module to the respective lock after verification from scanner completes and one of the switches is on.	3.3 The XBee DIN pin will receive information from the controller necessary to signal the respective locka. This waiting period will be done by programming the

			Wait for the user to rick		controller with a wait function
		a.	Wait for the user to pick		till one of the pins connected to
			which lock to be open		the controller sees a high signal.
					We will also incorporate a time
					out so as to not keep it always
					on once the scanner is
					successful. Time out will be
					checked by leaving the system
					alone and checking if one of the
					LEDs starts to blink.
		b.	Once a lock is picked, sent	b.	After receiving the signal from
			signal through the XBee		one of the switches, send packet
			using the UART interface		to XBee controller based on the
			should be to the right lock		XBee datasheet so as to transfer
					to the right lock. Tested fifty
					times and will check for right
					lock by using the controller on
					the receive side. We will store
					the message on the controller
					and read its memory using
					software for validation of the
					message received.
				These	tests will ensure that the
				contro	oller works well with each
					onent on the key.
	Microcontroller		ceives a valid signal from the		e RF receiver will have to behave
((Lock)		ee receiver and then signals		same as the transmitter
		the	electro-mechanical lock		erfaces with the key controller.
					is is tested the same way as
				des	cribed in section 3.3.
				On	ce the signal is validated, we can
				out	put a high initially to test an LED
				so a	as to know that the signal passes
				the	verification and the lock can
				nov	w be unlocked. Multiple tests will
					done to check the accuracy of
				this	s unlocking mechanism.
5 F	Panel of	5.1 The	e switches need to be	5.1 Tł	nis will be done using a simple

Switches	debounced such that it resets after 1 second.	debouncing circuit and will be checked using an oscilloscope by pressing the button thirty or so times. The oscilloscope should show that the button was hit thirty times with perfect accuracy. Also, the oscilloscope will give a high output when the button is pressed and it resets after a particular time so that the user can open another lock by scanning the fingerprint and activating the panel of switches.
	5.2 Ensure that the correct lock receives signal when the button is pressed.	5.2 When the button is pressed three LED's will be put near the receiver and whenever the corresponding button is pressed the correct LED should light up.
6 RF Transceiver	6.1 Serial connection works perfectly between XBee and the controller	 6.1 This will be verified by connecting the transmitting side and receiving side to different computers (using UART) and checking by sending 2kB data and then receiving it to ensure it works 90% of the time. It will be tested 30 times and error calculation will be done.
	6.2 To ensure that it activates when the correct frequency is received.	6.2 To ensure this, a test signal will be received. LED's will be placed such that when the correct signal is received, they would turn on and when an incorrect signal is sent it stays off. This whole process will be handled by the controller and signals will be sent manually to check on its verification.
	6.3 Range test. Should be able to	6.3 The range would be checked by

	communicate un to a 20m	conding the signal in different
	communicate up to a 30m	sending the signal in different
	distance between the	situations where the distance
	transmitter and receiver.	between the transmitted and
		received side vary. We will send
		sample test data using the
		controller and we should be able to
		receive data with 100% integrity up
		to a distance of 30m.
	6.4 All interfaces work at a	6.4 This will be done the same way as
	communication speed of 9600	described in Section 1.1 (b) by
	bps. The transceivers should do	connecting the controller and XBee
	the same.	together to exchange data at the
		defined rate.
7 Lock	7.1 Ensure enough power is there	7.1 Using an oscilloscope the amount
	so that the lock opens when it	of power received by the lock
	has to.	would be checked. Multiple tests
		will be done to check for how long
		the battery will last.
		the battery will last.
	7.2 It snaps the lock when signal is	7.2 Different voltages from the range
	received.	of 5V-20V would be given to the
		lock and would be checked for
		which ones it opens smoothly.
		which ones it opens smoothry.
		1

3.2 Tolerance Analysis

The tolerance analysis will be based on the sustainability of our communication module i.e. the RF transceiver. This is the most important part of our design. If this communication doesn't work, we will not be able to send any kind of signal to the unlocking mechanism. In order to test this system we will send multiple signals from the transmit side to the receive side and test for connectivity, data validation and transfer speed at different range of distances between transmit and receive side. We want an accuracy of 100% for data transfer and also a fast transfer rate so as to not have a huge delay between the pressing of the key and actually getting the lock unlocked.

4.0 Ethical Issues

The purpose of this project is to develop a safe portable key and lock system that can be used in daily life. We are well aware of Code of Ethics published by the IEEE to which all EEs must adhere. We will strictly follow these rules and guidelines provided to us in the development of our project and will not violate any of them. The table below summarizes the IEEE code of ethics relevant to us.

IEEE Code of Ethics ^[3]	Relevance in Design
"1. to accept responsibility in making decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;"	The purpose of the project is to make a secure lock and key system such that the user can keep their important documents safe. This feature of the device helps the user feel safe about their belongings.
"3. to be honest and realistic in stating claims or estimates based on available data"	Only the authorized user should be able to open the lock and hence the accuracy of the device is important such that no one else tries to open the lock. While doing the project every data taken will be reported honestly even if it isn't used.
 "5. to improve the understanding of technology; its appropriate application, and potential consequences" "6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;" 	Once the project is done, the knowledge about MSP430G2, UART, LEM 100 scanner and the XBee RF transceiver would be gained. This knowledge would help understand these devices and would also help gain technical competence.
"9. to avoid injuring others, their property, reputation, or employment by false or malicious action;"	It should be made sure that the authorized user is the only one allowed to use the key and no one else would be able to. This would help avoid any kind of theft or loss of property.
"10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics."	We will readily provide assistance to colleagues with their professional development and support them in their code of ethics.

5.0 Safety Analysis

There are very limited safety concerns while doing this project. This project requires relatively less power and it should not be an issue when testing or lab work is being done.

6.0 Cost & Schedule

6.1 Cost Analysis

6.1.1 Labor

Group Member	\$/Hour	Hours/Week	Number of Weeks	Multiplier	Total/Person
Aashay	30	15	12	2.5	\$13500
Akshay	30	15	12	2.5	\$13500

Total Labor Cost = \$27000

6.1.2 Parts

Part	Manufacturer	Price/Unit	Quantity	Total	Part Status
MSP430 Microcontroller	TI-430G2	\$5.89	4	\$23.56	Received 1
Fingerprint Scanner	Integrated	\$130	1	\$130	Ordered
	Biometrics-LEM100				
Electromechanical Lock	Machine Shop	\$125	3	\$375	To be ordered
XBee RF Transmitter/Receiver	Digi- 1mW Trace	\$20	4	\$80	Received
	Antenna - Series 1				
	(802.15.4)				
MIC5219 Voltage Regulator	Micrel	1.43	2	2.86	To be ordered
AA Battery Pack	Energizer	\$2.95	2	\$5.9	Ordered
3V Lithium Button Cell Pack	Energizer	\$2.00	1	\$2.00	Ordered
PCB and circuit elements	Machine Shop	\$25	1	\$25	To be ordered

Total Parts Cost = \$644.32

6.1.3 Grand Total

Labor Cost	\$27000
Parts Cost	\$644.32
Total Cost	\$27644.32

6.2 Detailed Schedule

Week	Akshay	Aashay
2/4	Proposal and figuring out the parts that would be needed	Proposal and figure out the power supply components.
2/11	Look up how the fingerprint scanner would work with the microcontroller and the RF transmitter.	Figure out the design and the working of the lock and the panel of switches. Order parts for the project.
2/18	Schematics, ethical issues, block descriptions and tolerance analysis for the design review	Test verifications table, parts table and flowchart design review.
2/25	Design the working of the microcontroller and the finger print scanner and make sure it takes the correct fingerprint.	Go to the machine shop and explain what kind of locks and the panel of switches would be needed.
3/4	Connect the microcontroller to the panel of switches and make sure it works when the correct finger print is inputted.	Test the voltage regulator for the power supply.
3/11	Send the signal from the RF transmitter to the receiver and make sure it works when correct signal is given.	Research on how the panel of switches would send the correct signal to the RF transmitter to transmit to the receiver.
3/18	Spring Break	Spring Break
3/25	Design the PCB layout and make sure it matches the schematic.	Make sure that the RF transmitter transmits the correct signal and the receiver receives it.
4/1	Adjust the PCB after what was found once debugging was complete.	Test for the locks to see what voltage is needed to unlock and that the correct lock opens when the signal is sent.
4/8	Confirm that the correct lock receives the signal once the panel switch is activated.	Implement the RF receiver and the lock opening system for all the locks.
4/15	Connect everything together such that everything is working is sync.	Connect everything together such that everything is working is sync.
4/22	Demo week.	Demo week.
4/29	Final Presentation and Final Paper	Final Presentation and Final Paper

7.0 References

[1]

"XBee®/XBee-PRO® RF Modules - 802.15.4 - v1.xEx [2009.09.23]."*Http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf*. Digi International Inc, 23 Sept. 2009. Web

[2]

"LEM100 Hardware Development

Manual."*Https://integratedbiometrics.zendesk.com/attachments/token/d0btaf2e6bsrvwt/?name= LEM100+Module+Hardware+Development+Manual+_En__Rev1.4.pdf*. Integrated Biometrics, n.d. Web.

[3]

"IEEE Code of Ethics." Available: <u>http://www.ieee.org/about/corporate/governance/p7-8.html</u>. Web.

[4]

"TI MSP430G2 Data Sheet." Available: <u>http://www.ti.com/lit/ug/slau318c.pdf</u>. Web.

[5]

"MSP430 Hardware tools Users Guide." http://www.ti.com/lit/ug/slau278l/slau278l.pdf. Web.

[6]

"A non-debounced Circuit"<u>http://www.utdallas.edu/~poras/courses/ee3320/xilinx/upenn/lab7-LabDigitalClock.htm</u> Web