Project

# Title Team Members TA Documents Sponsor
47 Virtual Cycling Reality (VCR)
Area Award: Entertainment
Bryant Johnson
Chongxin Luo
Gregory Knox
Luke Wendt design_document0.pdf
final_paper0.pdf
other0.pptx
other0.pdf
presentation0.pptx
proposal0.pdf
video
Our group project is to create an immersive virtual reality biking experience. We hope that our design will appeal to individuals who enjoy biking, but are unable to travel and experience biking in exotic locations and also encourage a healthier lifestyle.

The project involves integrating sensors onto a bike that rests on a stationary indoor bike stand. There will be sensors on the bike to collect information on the motions and actions. The capabilities that we seek to implement, are as following:
- IR sensors mounted on the rear wheel, with eight IR reflecting tapes installed on the wheel spokes equidistantly. The frequency of the IR signal spikes will be used to calculate the speed of the bike, the change in frequency giving us acceleration and deceleration.
- Motion sensors mounted on the stem of the bike, which are used to detect any physical turning of the bike handles and then enact the turn in the simulation. The handles will be disconnected from the front wheel, and the front wheel will be held stationary on the ground.
A physical damping system will be added on the rear wheel which is controlled by a microprocessor. The damping will be adjusted according to the environment in the virtual reality.
A fan will be physically mounted in front of user, the speed of the fan will be controlled by the speed of bike, which gives a realistic biking experience to the user.

In case we are unable to obtain an Oculus Rift DK2, the software implementation will be done without the support of DK2. The demo can be done by showing the experience on a computer screen, which will have less of an immersive experience, but all the concepts will still apply.

Team

Bryant Johnson (bhjhnsn2)
Gregory Knox (gaknox2)
Chongxin Luo (cluo5)

Smart Frisbee

Ryan Moser, Blake Yerkes, James Younce

Smart Frisbee

Featured Project

The idea of this project would be to improve upon the 395 project ‘Smart Frisbee’ done by a group that included James Younce. The improvements would be to create a wristband with low power / short range RF capabilities that would be able to transmit a user ID to the frisbee, allowing the frisbee to know what player is holding it. Furthermore, the PCB from the 395 course would be used as a point of reference, but significantly redesigned in order to introduce the transceiver, a high accuracy GPS module, and any other parts that could be modified to decrease power consumption. The frisbee’s current sensors are a GPS module, and an MPU 6050, which houses an accelerometer and gyroscope.

The software of the system on the frisbee would be redesigned and optimized to record various statistics as well as improve gameplay tracking features for teams and individual players. These statistics could be player specific events such as the number of throws, number of catches, longest throw, fastest throw, most goals, etc.

The new hardware would improve the frisbee’s ability to properly moderate gameplay and improve “housekeeping”, such as ensuring that an interception by the other team in the end zone would not be counted as a score. Further improvements would be seen on the software side, as the frisbee in it’s current iteration will score as long as the frisbee was thrown over the endzone, and the only way to eliminate false goals is to press a button within a 10 second window after the goal.