Project

# Title Team Members TA Documents Sponsor
47 Virtual Cycling Reality (VCR)
Area Award: Entertainment
Bryant Johnson
Chongxin Luo
Gregory Knox
Luke Wendt design_document0.pdf
final_paper0.pdf
other0.pptx
other0.pdf
presentation0.pptx
proposal0.pdf
video
Our group project is to create an immersive virtual reality biking experience. We hope that our design will appeal to individuals who enjoy biking, but are unable to travel and experience biking in exotic locations and also encourage a healthier lifestyle.

The project involves integrating sensors onto a bike that rests on a stationary indoor bike stand. There will be sensors on the bike to collect information on the motions and actions. The capabilities that we seek to implement, are as following:
- IR sensors mounted on the rear wheel, with eight IR reflecting tapes installed on the wheel spokes equidistantly. The frequency of the IR signal spikes will be used to calculate the speed of the bike, the change in frequency giving us acceleration and deceleration.
- Motion sensors mounted on the stem of the bike, which are used to detect any physical turning of the bike handles and then enact the turn in the simulation. The handles will be disconnected from the front wheel, and the front wheel will be held stationary on the ground.
A physical damping system will be added on the rear wheel which is controlled by a microprocessor. The damping will be adjusted according to the environment in the virtual reality.
A fan will be physically mounted in front of user, the speed of the fan will be controlled by the speed of bike, which gives a realistic biking experience to the user.

In case we are unable to obtain an Oculus Rift DK2, the software implementation will be done without the support of DK2. The demo can be done by showing the experience on a computer screen, which will have less of an immersive experience, but all the concepts will still apply.

Team

Bryant Johnson (bhjhnsn2)
Gregory Knox (gaknox2)
Chongxin Luo (cluo5)

Growing Degree Day Monitor

Anthony De Roo, John Habegger, Jay Zhaoyu Yao

Featured Project

The purpose is to create an inexpensive growing degree day monitor that records temperature and computes growing degree days for a specific farming field during a growing season. This monitor will be placed near a farm field where it will monitor temperature conditions during the growing season. It will record both the ambient air and soil temperatures over the course of day. These temperatures will then be used to calculate the growing degree days. The cumulative number of degree days will then be displayed on either a seven-segment display or this can be downloaded to a computer. This monitor will be powered through a combination of both solar and battery power.