
[Virtual Cycling Reality]

By

Bryant Johnson

Chongxin Luo

Gregory Knox

Final Report for ECE 445, Senior Design, Spring 2016

TA: Luke Wendt

1 May 2016

Project No. 47

Abstract

The Virtual Cycling Reality Project is an attempt to bring the modern technology of virtual reality into the home

of the average user. The virtual reality system is realized through a bike containing IR sensors to record wheel

position and a potentiometer to measure handlebar position. The virtual world was created using the Unity 3D

engine displayed using Google Cardboard while fan and resistance systems provide environmental feedback. This

paper covers the design of the above components as well as the steps to verify and integrate them. This paper also

covers some of the limitations of the current design and future possibilities to improve upon the already immerse bike

riding experience.

i

Contents

1 Introduction . 1

2 Design. 1

2.1 Design Overview . 1

2.2 Top Level Block Diagram . 2

2.3 Power Module Unit . 2

2.3.1 Voltage Regulator . 2

2.4 Control Module Unit. 4

2.4.1 Microcontroller . 4

2.5 Sensor Module Unit . 5

2.5.1 Handlebar rotary Encoder . 5

2.5.2 Phone Accelerometer . 5

2.5.3 Wheel IR Sensor . 5

2.6 VR Module Unit . 5

2.6.1 Unity5 Simulation program. 5

2.6.2 Unity Remote 4 . 6

2.7 User Interface Unit . 6

2.7.1 Roller/Resistance System . 6

2.7.2 Fan Controller . 6

2.8 PCB Layout . 9

2.9 Design Revisions . 10

3 Design Verification . 11

3.1 Power. 11

3.1.1 Voltage Regulator . 11

3.1.2 Fan Controller . 11

3.2 Control. 12

3.2.1 UART Serial Communication . 12

3.3 Sensors Module Unit . 12

3.3.1 Smartphone Accelerometer . 12

3.3.2 Handlebar Encoder . 13

3.3.3 Wheel IR Senor . 14

ii

3.4 VR Module Unit . 14

3.4.1 Simulation . 14

3.5 User Interface Unit . 14

3.5.1 Resistance System . 14

4 Cost . 15

4.1 Parts . 15

4.2 Labor . 16

4.3 Grand Total . 16

5 Conclusion. 17

5.1 Accomplishments . 17

5.2 Ethical considerations . 17

5.3 Future work . 17

Reference . 18

Appendix A Requirement and Verification Table . 19

Appendix B Port Communication Character Control Code. 25

Appendix C Accelerometer Drifting Testing Code. 29

Appendix D Frame Rate Testing Code . 30

Appendix E PCB Layout . 31

iii

1 Introduction

The age of Virtual Reality (VR) is fast approaching, but VR experiences are currently beyond the reach of the

average consumer. Dedicated goggle systems and hardware designed to interact with them are prohibitively

expensive for the average consumer at $800 for an HTC Vive system. The Virtual Cycling Reality (VCR)

Project seeks to bring the power of VR into the homes of the average consumer. This will be accomplished by

creating a 3D simulation world in which the user can bike. This world will come to life through a system of

sensors, a fan based environmental feedback system, and by harnessing the power of the user’s smart phone,

coupled with a head mounted display. While other existing virtual biking experiences, such as CycleOps

and The Virtual Bike, also attempt to bring a cycling experience into the home, they rely on 2D display

measures and lack the environmental feedback that the VCR Project will provide.

2 Design

2.1 Design Overview

In order to achieve our goal of a responsive and low latency virtual reality experience, we have segmented

our project into the high level modules shown in figure 1. This model of our project shows the relationship

between the various subsections of our design. Our intention throughout the design process was to keep the

experience of riding the bike to feel as natural as possible. In order to maintain this, our design included

mounting sensors and feedback to an actual bike elevated on a bike trainer. The sensing unit consists of

the wheel infared sensor, handlebar encoder, and the phone accelerometer which track the wheel speed,

handlebar position, and head orientation respectively. The control unit then probes the sensors attached

to the bike and relays the information to the VR module which handles the data processing. The user

wears VR goggles that allow him/her to view their location in the simulation as well as look around in the

environment. Depending on the current speed of the user as well as their current acclivity in the simulation

the Unity program sends a change of state message back to the microcontroller. The microcontroller then

alters the userfeed back systems on the bike, which are the fan and resistance systems.

1

2.2 Top Level Block Diagram

Figure 1: Block Diagram

2.3 Power Module Unit

2.3.1 Voltage Regulator

Power for this project is acquired directly from the standard wall outlet. A 5:1 step-down transformer was

originally considered to step down the line voltage for the regulator circuits. The resulting supply voltage

of about 34 volts was too high and stretched the thermal limits of the circuit. In order to reduce generation

of waste heat and bring the supply voltage closer to the intended 12 V an 8:1 step-down transformer was

used in the final design. This transformer lowers the 120 V rms outlet potential down to 15 V rms where it

is rectified into dc. An output capacitor then filters the pulsed dc signal. The dc voltage is approximately

at the peak voltage of the 15 Vrms signal (15×
√

(2) = 21 V). Figure 2 shows the schematic of this rectifier.

From the rectified supply voltage two fixed voltage two voltage regulators supplied the circuit with two 12

V supplies. The original design for these regulators was focused around the ACT4514 switching regulator.

This device accepts an input voltage up to 40 V and can output up to 12 V and 1.5 A. The circuit for this

regulator is shown in Figure 3.

Parameter values for the converters were determined using the datasheet. The feedback resistor divider is

2

Figure 2: Stepdown transformer and rectifier circuit.

Figure 3: 12 V switching regulator circuit.

used to set the output voltage. This also acts to correct for any changes in the output load that would

change the output voltage. Equation 1 is used to calculate the second resistor in the feedback divider. RFB2

is recommended to be 10 KΩ. A 140 kΩ resistor is used as a close value to 138.5 kΩ

RFB1 = RFB2(
Vout
8.08

− 1) = 10k(
12

8.08
− 1) = 138.5 kΩ[1] (1)

The inductor calculation is shown in Equation 2. The calculated value is for the 12 V regulator. The

datasheet recommends using Kripple = 0.3 and indicates that the switching frequency is 210 kHz. The

calculated value of 88.04 µH was substituted with a 100 µH inductor since they are much more common.

Capacitor values were chosen as recommended in the datasheet.

L =
Vout × (Vin − Vout)

VinfswIloadmaxKripple
=

12 × (34 − 12)

34 × 210 × 103 × 1.4 × 0.3
= 88.04 µH[1] (2)

Due to the nature of surface-mount components, the he ACT45 relies on the ground plane to dissipate any

heat it generates. During testing of this circuit it was found that the ground plane was insufficient and the

component would enter into thermal protection. As a result output voltage would drop after a few seconds.

In order to correct for this problem an alternate regulator arrangement was constructed. A pair of LM317

3

adjustable linear regulators were chosen to supply the circuit for the final demo. The regulators were set to

output 12 V as shown in Figure 4. The resistor R2 was set experimentally to achieve 12 V output.

Figure 4: LM317 linear regulator circuit.[2]

2.4 Control Module Unit

2.4.1 Microcontroller

The microcontroller in this project acts as the connecting bridge between sensors and the simulation. An

Arduino Uno is used for this purpose. The power source for this unit comes from the voltage regulator

and will be operating at 12 V. It takes input from the wheel IR sensor and the handlebar encoder. After

probing the sensors the data collected is sent to the Unity simulation using Universal Asynchronus Receive-

ing/Transmiting (UART) serial connection. In the case of a changing terrain due to the user, the simulation

sends a new resistance value to the microcontroller via the UART. In response, the microcontroller then

alters the PWM signal sent to the Roller/ Resistance system in order to change the pedalling resistance. Or

in the case of the Fan system, altering the triac delays or the DC fan pwm signals to change the speed of

the fans.

When designing the microcontroller, the issue of latency was a large concern. Due to the nature of our

project the critical path must be kept as short as possible. Based on the documentation given for our

microcontroller , the execution time for an analog read from one of our pins is 100 µsec. Since we are polling

from the potentiometer on the handlebar as well as the IR sensors attached to the wheel. Thus, reading

from these sensors would take a combined 200 µsec. The UART module is sending data at a rate of 20 Hz .

After reading from the pins a packet containing the sensor information will be sent to the simulation. The

data rate was chosen as midpoint between sending too much data too quickly, overloading the simulation,

and sending data to slowly, resulting in a laggy user response.

The data packets were chosen to be a byte in length. The speed of the bike was calculated using input

from the IR sensors and is maxed at 30 kph, which is well above the average rider speed. The angle of the

handlebars is then mapped to the remaining 325 byte variations and sent to the unity simulation. The data

was segregated in this way as to make processing quicker an more efficient on the software side.

4

2.5 Sensor Module Unit

There are total of three sensors being used in the project in order to track the user’s physical movement.

Those sensors are the IR sensor tracking the speed of the bike wheel, the rotary encoder tracking the bike

handlebar position, and the smartphone accelerometer tracking the user’s head movement. The IR sensor and

rotary encoder are connected to the microcontroller for communication and the smartphone accelerometer

is directly communicating with the simulation program via UART serial communication.

2.5.1 Handlebar rotary Encoder

In order to effectively measure the angle of the handlebars, a 5k potentiometer is placed in the tube of the

handlebar. The top section of the potentiometer is attached to the handlebar, and the button section of

the potentiometer is attached to the front wheel. The handlebar and the front wheel are being disconnected

which allows the handlebar to freely rotate. The potentiometer is configured as a voltage divider where the

top and bottom pins are 5 V and ground respectively. This allows us to user the middle pin as a sense

pin, where the microcontroller can perform an analog read of the voltage. The rotation action will lead

to resistance changes for the system, and the voltage reading from the sense pin will be probed by the

microcontroller and mapped to be sent to the simulation.

2.5.2 Phone Accelerometer

The built in accelerometer on the smart phone is used to track the user’s head movement. Its input directly

feeds into the Unity Program, which is being used to control the simulation field of view. Due to the

limitation of the accelerometer, only rotation movement will be support, the linear movement will not be

supported in our design.

2.5.3 Wheel IR Sensor

Two IR sensors (IR emitter and IR receiver) are installed at both sides of the rear wheel. A circle of duck

tape are being applied around the wheel to block the IR rays with four openings which are evenly spread

out.These opening serve as breaks in the sensor readouts probed by the microcontroller. Time diffrential

between the breaks is measured and used in the speed calculation. This calculation is trivial since the radius

of the wheel is known.

2.6 VR Module Unit

2.6.1 Unity5 Simulation program

The simulation program is built on Unity5 Engine. It contains functions for simulating environment render-

ing, shading, and texture. The Unity5 simulation is the center of graphical computation for VR simulation.

It takes inputs from both smartphone accelerometer and microcontroller via USB connection, and integrates

all input signals into simulation control.

The unity program uses the serial port to communicate with the microcontroller. It uses a try-catch loop

for any serial port actions, with the reading timeout is set as 1 microsecond. The read in value from serial

port is asssigned to speed and handlebar position of simulation bike. The slope of the bike is calculated by

the bike orientation angle in y-axis direction and sent to the microcontroller.(See Appendix B)

5

2.6.2 Unity Remote 4

As the connection between the unity program and the smartphone graphic output, Unity Remote 4 is used

to accomplish this task. Unity Remote 4 is being ran on the smartphone, which samples the image from

the Unity simulation program and displays it onto the smartphone screen. It serves as a viewing device and

does not handle any computation. [3]

2.7 User Interface Unit

2.7.1 Roller/Resistance System

The Rollers/Resistance system is located on the rear wheel of the bike, and gives direct feedback to user

from the simulation. The rear dropout of the bike is supported by a bike stand while the roller system is

applied to the rear wheel. The roller system is incorporated on the bike stand as a part of the bike trainer.

The resistance works by moving a magnet in proximity to a metal roller. The position of this magnet is

controlled by a steel cable which is extended using a linear actuator controlled by the microcontroller.

2.7.2 Fan Controller

Fan speed is determined by the rider speed in the program simulation. Speed control for the dc fans is

achieved through a buck converter. The dc fan covers low rider speed situations. The buck converter accepts

a PWM signal from the microcontroller and outputs a varying voltage to the dc fans. The circuit for this

converter is shown in Figure 5. A high side mosfet driver is required for this circuit to operate. Originally

this driver was chosen to be the IRS2124 but attempts to build the circuit revealed that this device did not

perform the task we required from it. Instead the UCC2701 driver was used.

Figure 5: Fan control buck converter circuit.

The equation used to calculate the buck converter inductor value is given in Equation 3. This value was

calculated for a minimum output voltage of Vout = 6 V which corresponds to a duty ratio D = 0.5. The

switching frequency was chosen to be the maximum PWM output frequency of the Arduino Uno. This

microcontroller can output at 62.5 kHz in fast PWM mode with 8-bit resolution.[4] The inductor ripple

current ∆iL was chosen to be 40% of the maximum current of 1.2 A. Equation 4 shows the result of this

calculation. The output capacitor value was similarly determined. The equation for this calculation is show

6

in Equation 5. The ripple voltage was arbitrarily chosen to be 1% to find an appropriate capacitance.

Equation 6 shows the result of this computation.

L =
(Vin − Vout) × (D × 1

fsw
)

∆iL
(3)

L =
(12 − 6) × (0.5 × 1

62500)

0.4 × 1.2
= 102.86 µH (4)

C =
∆i× (1 −D) × 1

fsw

∆Vripple
(5)

C =
0.467 × (1 − 0.5) × 1

62500

0.06
= 62.2 µF (6)

Figure 6: LTSpice buck converter circuit.

The calculated values for the capacitor and inductor were used to choose the values of the inductor and

capacitor appearing in the circuit in Figure 5. Since 100 µH inductors are common this was chosen as

the inductance value. A very low ESR 68 µF capacitor was chosen for this design. A simulation of these

parameters was performed using the LTSpice circuit in Figure 6. Figure 7 plots the output values at various

duty ratios showing dc voltages close to expected values.

The ac fan is intended for high rider speed situations and is controlled by a triac circuit. This circuit is

shown in Figure 8. The triac blocks the ac voltage until a control signal is provided to the gate. The voltage

can then pass through the triac until the signal reaches zero. The gate is activated with a pulse from the

microcontroller. The MOC3012 is used to isolate the high voltage ac signal from the microcontroller. The

resistor and capacitor values in Figure 8 are derived from the MOC3012 datasheet.[5]

In order for the microcontroller to know when to trigger the triac a zero crossing circuit must be used. The

zero crossing circuit is shown in Figure 9. When the ac signal drops below the optocoupler’s turn on voltage

the diodes no longer conduct and the optotransistor no longer conducts. A brief 5 V signal appears at the

7

Figure 7: LTSpice simulation results showing expected output voltages.

Figure 8: Control circuit for ac fan.

microcontroller input.[6] This behavior confirmed in an LTSpice simulation. The LTSpice circuit is shown

in Figure 10.

The results of the LTSpice simulation are shown in Figure 11. The figure shows that at each zero crossing of

the input signal there is a brief 5 V peak at the output to the microcontroller to indicate the zero crossing.

Once the zero crossing has been located, the microcontroller waits a certain amount of time depending on

the desired speed of the fan and then triggers the triac. A shorter time delay gives a faster fan speed.

8

Figure 9: Zero crossing circuit schematic.

Figure 10: LTSpice Zerocrossing simulation circuit.

2.8 PCB Layout

The design for the PCB focused on incorporating all circuit elements onto the same board. This requirement

made it necessary to ensure that there was sufficient isolation between the high voltage sides of the board

and the low voltage components on the other. In order to achieve this effect the high voltage components

were collected at one side and the remaining were collected on an opposing side. In the region between

these two sections, where the optoisolators sit, the copper backing was completely removed in order to

make short circuits difficult to occur. The final PCB layout design in shown in Appendix D. The sizing of

the ground plane around the voltage regulators was later found to have been insufficient and resulted in

excessive heating of the chip. As a result of this excess heating, linear regulators were used instead. The

linear regulator circuits were assembled on a separate prototyping board with connections to the existing

PCB made with wires connected to open vias.

9

Figure 11: Plot of zero crossing pulses.

2.9 Design Revisions

During the time working on our original design, there were several revision that we made in order to improve

the functionality of the final project. These changes were heavily researched and only made in bottleneck

situations where our project was hindered by a few select components.

Most notably, in our original design we used Bluetooth Low Energy (BTLE)[7] as a method of communication

between the microcontroller and the Unity Simulation. BTLE was chosen due to its quick data transfer

speeds, reliability, and wireless nature. However, when running tests on the simulation on the smartphone

the frame rate dropped to around 30 fps. This measure was much lower than our design requirement of

60 fps, which is the standard for virtual reality applications. In order to accommodate this shortcoming

we moved the graphic processing of the simulation onto a laptop with higher graphical processing power,

allowing us to push our simulations up to the required fps. The simulation is now instead streamed to

the phone. As a result bluetooth communication with the phone was no longer possible, thus Universal

Asynchronous Receiver/Transmitter (UART) Serial communication became the preferable method for data

transfer.

In future iterations of this project BTLE communication would be an integral part of the design allowing

for more flexibility for the user. Nonetheless, before BLTE can be implemented a more efficient graphical

application for the smartphone would have to be developed.

10

3 Design Verification

3.1 Power

3.1.1 Voltage Regulator

The original switching voltage regulator was constructed and tested for input voltages up to 25 V (the limit

of the bench power supplies). In order to be certain that thermal issues were causing the failure of these

regulators, the circuit was built on the circuit board and tested as outlined in Appendix A. At 25 V the

voltage would drop from 12 V nearly instantly. At 15 V and full verification power the regulator would sit

at 12 V for a few seconds before dropping to. The replacement linear regulators were tested exactly as the

original regulators were to be tested. These regulators performed well but extra care was required to ensure

that they would not produce excess heat since they produce their regulation by converting the excess voltage

to heat. Output voltage for the linear regulators was precisely 12 V with no measurable ripple. At 10 Ω

output load the measured current was exactly 1.2 A.

The buck converter that supplies power for the fan controller was tested similarly to the voltage regulator.

At a 95% duty ratio the voltage ripple measured at 0.448 V which is within specifications. The duty ratios

between 95% and 50% were confirmed at intervals of 10%. Across this range the ripple was unchanged and

remained at about 0.448 V

3.1.2 Fan Controller

The zero crossing circuit was tested in discrete steps that lead toward full implementation. Since the zero

crossing is detected on full line voltage it was important to confirm correct behavior at lower voltages in

order to prevent damage to the circuits. This was done by first providing the circuit with a test 10 Vpp 60

Hz ac waveform and 5 V from the function generator. This generated expected pulses 1.134 ms long. With

the circuit behavior confirmed the full line voltage was provided and the circuit was fully verified as outlined

in Appendix A.

Testing on the ac fan was conducted using a test program. The test program accepts an interrupt from

the verified zero crossing circuit and records the time using the micros function. The test program then

waits a desired amount of time before sending a high pulse to the triac gate pin. To determine appropriate

times corresponding to the ac fan speeds this delay time was experimentally varied. The power output to

the fan was connected to a power meter and the rms voltage and power were recorded. The results of the

chosen delay times are shown in Table 1. From the table the result shows a lower voltage for a longer delay

as expected. The 5000 ms time established a lower limit on fan speed while the 3000 ms time established

the upper limit. The rms values between these points are within the 15 V difference established in the

Requirements and Verification table. In order to create a fourth fan speed a value of 3500 ms was chosen.

When this circuit was integrated into the main control code even narrower divisions between the delays were

established experimentally in order to eliminating pulsing of the fan speed and create a smooth transition

between the different speed levels.

11

Table 1: Measurements of AV fan voltage and current.

Delay (µs) Vrms Power (W) Current (A)

5000 79.86 8 0.21

4000 100.59 17 0.34

3000 115.64 26 0.44

Verification of the dc fan speeds was conduced by providing the buck converter circuit with a signal from

the function generator and connecting the fan load to its output. The fan speed sense pin was observed on

the scope to determine fan speed. The fan speeds corresponding with the requirements in Appendix A were

determined experimentally by varying the duty ratio until the desired speed was found. This resulted in

three fan speeds available to the simulation that correspond to low medium and high speeds. These duty

ratios were found to be 95%, 75%, and 50% respectively.

3.2 Control

3.2.1 UART Serial Communication

Our requirements for the UART states that the round trip time for a data packet sent from the microcontroller

to time simulation and back to be less than 10 ms. In order to test this we loaded a test program onto the

microcontroller and sent out a test byte. After this test byte was sent out the microcontroller started

a timer to verify our requirement. When the simulation received the byte it immediately sent back and

acknowledgement signal. Upon arrival, the micontroller stops the timer and prints this output to the screen.

Experimentally we acheived values all below our requirement.

3.3 Sensors Module Unit

3.3.1 Smartphone Accelerometer

Both tracking accuracy and drifting errors were tested and verified for the smartphone accelerometer. For the

tracking accuracy test, the simulation ran with the orientation of the ”head” GameObject printed out to the

unity console. The smartphone was held in the Google Cardboard, with testing orientation being performed

in all three axis. The angle of testing orientation was measured with protractor, and the rotation angle was

compared with the rotation angle being outputted onto the unity console. The result of the rotation ac-

curacy test was significant. The rotational accuracy was able to achieve an average of ± 1.5 degrees accuracy.

In order to test and verify the drifting error of smartphone accelerometer that is being used on this project,

the simulation program ran with the orientation of the ”head” Gameobject being recorded and outputs into

analysis file every 10 seconds. The simulation testing ran for 700 seconds continuously, with the smartphone

orientation keep constant. The C script that extract the Gameobject orientation during testing. (See Ap-

pendix C)

The drifting error test was designed as a continuous 700 seconds static test. The test was performed three

times with each time testing the drifting error of a specific axis (x,y, or z axis). The data that produced

12

during the drifting error tests were collected and analysed. Figure 12 below shown the accelerometer drifting

error along the x-axis over a period of 700 seconds.

error.png

Figure 12: Accelerometer drifting error testing data

As shown in Figure 12, the drifting error in x-axis of the smartphone accelerometer was limited in 0.5

degrees over a period of 700 seconds. This result meets the requirements for smartphone accelerometer for

this project.

3.3.2 Handlebar Encoder

The handlebar encoder was tested after the fully installation of the handlebar encoder, and the finishing of

the handlebar position code in microcontroller. A protractor was used for the testing of handlebar encoder.

The protractor was centered with the rotation center of the handlebar, and it is kept stationary with respect

to the front wheel. A wooden stick was taped on the handlebar which points onto the protractor in order

to show handlebar rotation degrees. The handlebar position in the simulation was printed out to the unity

console. The maximum rotation of the handlebar was tested with the handlebar starting at the neutral

position (when the handlebar is orthogonal to the front wheel). It was turned left 120 degrees and turned

right 120 degrees, and the reading from unity console output was checked and compared. The resolution and

accuracy of handlebar was tested with turning the handlebar left or right with certain testing values, and

the value was compared and verified with the unity console output. The handlebar encoder was tested and

verified that it satisfies all requirements for this projects. The accuracy and the resolution of the handlebar

is able to achieve under 2 degrees, and the maximum rotation of the handlebar achieved more than 120

degrees in both clockwise and counter clockwise direction.

13

3.3.3 Wheel IR Senor

The IR sensor was tested with the input from a consumer bike speedometer. A consumer version of bike

speedometer was installed on the rear wheel of the bike. A testing group member was riding the bike to

perform the test. The speed of the bike was printed out to the unity console for compression. To test the

minimum speed, the testing member was riding the bike with speedometer shown of 3km/h constantly. The

speed reading output from unity console was read and compared. To test the maximum speed, the testing

member was riding the bike with speedometer shown of 30km/h constantly. The speed reading output from

unity console was read and compared. To test the speed accuracy of the IR sensors, the testing member was

riding the bike range from minimum speed to maximum speed. The speedometer readings was constantly

being compared with the unity console readings. The performance of the IR sensors satisfied all requirements

for this project, which it can measure the minimum speed of 3km/h and maximum speed of 30km/h and

has the accuracy of ± 2km/h.

3.4 VR Module Unit

3.4.1 Simulation

The frame rate of the simulation is a critical measurement for the VR experience. In order to test and

verify the frame rate performance for the simulation of this project, a specific sections of C scripts were

being written in order to calculate the simulation frame rate at current time and display the frame rate

information onto the simulation screen. (See Appendix D).

As the testing result, the unity simulation program for this project was assigned with frame rate upper

limited of 200fps (frames per second). The real time testing without smartphone graphic output, the frame

rate of the simulation was able to achieve a static 150fps ± 20fps. With the smartphone graphic output

being integrated, the real time testing frame rate performance of the simulation was able to achieve 80fps ±
20 fps. This performance satisfied the requirements for the simulation program for this project.

3.5 User Interface Unit

3.5.1 Resistance System

The resistance system was verified using experimentally derived positions. Instead of using positions one inch

apart as indicated in the Requirements and Verification table in Appendix A the positions were determined

based on duty ratio provided to the linear actuator. The linear actuator was able to pull the resistance cable

to 5 positions as the requirement table desired but one inch positions were not realistic due to the actual

range of movement of the cable.

14

4 Cost

4.1 Parts

Table 2: Parts Costs

Description Manufacturer Part Number Cost Number

Ordered

Total Cost

Bike Dynacraft n/a $109.97 1 $109.97

Samsung Galaxy S5 Saumsung n/a $467.99 1 $467.99

IR Reflectiv e Sensor Adafruit 2167 $1.59 2 $3.18

Google Cardboard Knox Lab KNOX V2 $15.00 1 $15.00

Arduino Uno Aruduino n/a $24.95 1 $24.95

ATMega328 Amtel n/a $3.70 2 $7.40

Bluetooth Adaptor Adafruit nRF8001 $19.95 1 $19.95

Bike Trainer FDW n/a $79.99 1 $79.99

Servo Hiteck hs311 $7.99 1 $7.99

Fan(4 pack) Coolermaster R4-S2S-124K-

GP

$12.99 1 $12.99

Rotary Encoder Allied RV4NAYSD103A $7.81 1 $7.81

High side driver Infineon Tech-

nologies Americas

Corp.

IRS2124STRPBF $2.31 2 $4.62

Voltage regulator Active-Semi ACT4514SH-T $0.72 5 $3.60

Transformer White Rodgers 90-T40F3 $11.99 1 $11.99

N Channel power mos-

fet

Fairchild FQP30N06L $0.95 3 $2.85

10 uF capacitor TDK FK20X7S1H106K $1.06 2 $2.12

8200 uF capacitor Nichicon LGU1H822MELB $3.89 2 $7.78

140 kOhms resistor Yageo MFR-25FBF52-

140K

$0.10 3 $0.30

Optocoupler Everlight H11AA1M $0.55 2 $1.10

Diode Fairchild 1N4148 $0.10 3 $0.30

68 uF capacitor Nichicon RR71C680MDN1 $0.66 5 $3.30

Power entry module Qualtek 762-18/002 $9.46 1 $9.46

100 uH inductor Bourns 6100-101K-RC $0.77 4 $3.08

Total Components: $807.72

15

4.2 Labor

Table 3: Labor Costs

Labor Cost

Wage Per Hour * 2.5 $78.75

Hours Per Week (hours) 20

Number of Weeks (Weeks) 16

Number of Workers (Person) 3

Total $75, 600.00

4.3 Grand Total

Table 4: Total Costs

Components $807.72

Labor Cost $75, 600.00

Grand Total $76, 407.72

16

5 Conclusion

5.1 Accomplishments

At the end of the project, all requirements and expectations have been achieved. A smooth VR experience

was achieved with stable frame rate performance of 80fps. The latency of the user input was minimized

within 100ms. All sensors are able to track the physical actions with required precision. Specifically the

speed of the bike is able to be tracked within 2km/h accuracy and minimum of 3km/h and maximum of

30km/h. The handlebar rotation is able to be tracked with accuracy of 1.5 degrees, and the accelerometer

drifting error is being limited within 0.5 degrees over 700 seconds. In additional, the power unit is able

supply power for all modules, and all user feedback units are able to provide reasonable physical feed backs

to user in real time.

5.2 Ethical considerations

1. All designs and functionality of this project were designed with the complete physical safety of the

consumers in mind. We have, to the best of our ability, reduced the risks of all physical harms.

2. The VR simulation was designed with safety and the user experience in mind. It was tested fully to

minimize all possible uncomfortable experiences to the consumers.

3. VR simulation contains user friendly information, the simulation was designed to be suitable for users

from variety backgrounds.

4. Due to the nature of VR simulation, people that are under age 12 are not being recommended to use

the VR simulation. The maximum time usage of the simulation is recommended remain under 20

minutes per usage.

5.3 Future work

Although we have created a working design, the are various improvements/considerations that should be

examined. As mentioned previously, changing the communication method from UART to BTLE is a convent

change that makes the users riding experience feel more natural. In addition, using a microcontroller with

more timer interrupts would allow for us to perform some of the heavier microcontroller functions in parallel.

Some minor improvements to the PCB layout would likely allow us to use the original regulator chips as

well. As a stretch goal we considered the possibility of mounting the bike on a stand that would allows the

user to lean on the bike in any direction. While this would greatly improve the immersion and realism of

the system, safety concerns and difficulties with realizing this design left us to only consider the bike in the

fixed stand. With more outside help and additional mechanical design such a system could be designed as

a future improvement.

17

References

[1] “Act4514 datasheet.” [Online]. Available: http://www.alldatasheet.com/datasheet-pdf/pdf/430740/

ACTIVE-SEMI/ACT4514.html

[2] “Lm317 datasheet.” [Online]. Available: http://www.ti.com/lit/ds/symlink/lm317.pdf

[3] “Unity remote 4 application.” [Online]. Available: http://docs.unity3d.com/Manual/UnityRemote4.html

[4] “Arduino forum.” [Online]. Available: https://forum.arduino.cc/index.php?topic=310753.0

[5] “Moc3012 datasheet.” [Online]. Available: http://www.ti.com/lit/ds/symlink/moc3012.pdf

[6] “Zero-crossing detectors circuits and applications.” [Online]. Available: http://www.bristolwatch.com/

ele2/zero crossing.htm

[7] “Bluetooth low energy.” [Online]. Available: https://www.bluetooth.com/what-is-bluetooth-technology/

bluetooth-technology-basics/low-energy

18

http://www.alldatasheet.com/datasheet-pdf/pdf/430740/ACTIVE-SEMI/ACT4514.html
http://www.alldatasheet.com/datasheet-pdf/pdf/430740/ACTIVE-SEMI/ACT4514.html
http://www.ti.com/lit/ds/symlink/lm317.pdf
http://docs.unity3d.com/Manual/UnityRemote4.html
https://forum.arduino.cc/index.php?topic=310753.0
http://www.ti.com/lit/ds/symlink/moc3012.pdf
http://www.bristolwatch.com/ele2/zero_crossing.htm
http://www.bristolwatch.com/ele2/zero_crossing.htm
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy

Appendix A Requirement and Verification Table

Table 5: System Requirements and Verifications

Requirement Verification Verification
status (Y

or N)

1. Voltage Regulator
(a) 12 Volt regulators supply cur-

rent up to 1.2 A with maxi-
mum ripple of ±0.6 V . 36 V
maximum input. (4 pts)

(b) Buck converter supplies load
up to 14 W at 95% duty ra-
tio and operates down to 50%
duty ratio. Maximum voltage
ripple of ±3% (3 pts)

1. Verification
(a) i. Attach 10Ω power resistor

as regulator load.

ii. Attach oscilloscope probe
across load.

iii. Supply 36V to regulator
from DC supply.

iv. Verify voltage remains be-
tween 12.6 V and 11.4 V.

(b) i. Attach 10Ω power resistor
at converter output.

ii. Attach oscilloscope probe
across the load.

iii. Supply 12V to converter
from DC supply.

iv. Provide 50% duty ratio
62.5 kHz from function
generator.

v. Verify voltage remains be-
tween 6.2 V and 5.8 V.

Y

2. Resistance System
(a) Driving linear actuator pulls

resistance systems into 3 posi-
tions with 1 inch variance be-
tween each position. (2 pts)

2. Verification
(a) i. Using microcontroller and

write several testing posi-
tions difference to the ac-
tuator.

ii. Measuring the distance of
the wire pulled by the ac-
tuator, using a ruler, to
ensure correct position.

Y

Continued on next page

19

Table 5 – continued from previous page
Requirement Verification Verification

status (Y
or N)

3. Microcontroller
(a) Microcontroller running final

demo code able to achieve a
sensor probing with period less
than 2.5ms. (3 pts)

(b) UART communication with
PC has a round trip time less
than 10ms.(3 pts)

3. Verification
(a) i. Upload verification code

to the microcontroller.

ii. User operates bike con-
troller while the simula-
tion is running.

iii. Measure the time between
probes using the micro-
controllers timing func-
tions.

iv. Print period to the screen.
Verify that the period is
not greater than 2.5 mil-
liseconds.

(b) i. Upload verification code
to the microcontroller,
and the PC simulation.

ii. Mark the time a UART
signal is sent to the PC.

iii. Have PC send a response
message back to the mi-
crocontroller, record the
time that it returns.

iv. Verify that the round trip
time is not more than
10ms.

Y

4. Bike
(a) Support user with maximum of

120kg body weight. (0 pts)
(b) Support maximum biking

speed of 30km/h. (3 pts)

4. Verification
(a) i. Measuring out 120kg of

weight with a scale.

ii. Place the weight directly
onto the bike with weight
mount.

iii. Check the stability of the
system.

(b) i. Installing bike speedome-
ter in order to measure the
wheel speed of the bike.

ii. Testing member riding
the bike, increasing the
wheel speed gradually
until reaches 35km/h.

iii. Check the stability of the
system.

Y

Continued on next page

20

Table 5 – continued from previous page
Requirement Verification Verification

status (Y
or N)

5. Fan Controller
(a) Zero crossing circuit detects

all zero crossings and provides
pulse width of at least 0.05 ms.
(2 pts)

(b) Ac fan operates at four distinct
speeds seperated by 20 Vrms ±
5 Vrms. (3 pts)

(c) Dc fan operates at three dis-
tinct speeds. Maximum speed
is at least 1100 RPM and each
speed setting is 200 RPM ± 50
RPM from the last setting. (3
pts)

5. Verification
(a) i. Attach oscilloscope probe

across digital output.

ii. Provide wall power to cir-
cuit.

iii. Confirm on oscilloscope
that time between pulses
are consistent and are
about 8 ms apart.

iv. Measure width of pulse
on oscilloscope and verify
that it is at least 0.05ms
across.

(b) i. Attach power meter
probes across.

ii. Provide circuit with wall
power.

iii. Activate microcontroller
test routine to test 4
different time delays.

iv. Record the rms voltage
supplied to the fan for
each time delay setting.

v. Verify each speed setting
provides between 15 and
25 Vrms difference from
the last.

(c) i. Attach oscilloscope probe
across dc fan pulse output
setting.

ii. Provide 12V to buck con-
verter circuit.

iii. Activate microcontroller
test routine to test 3
different duty ratios.

iv. For each setting record fan
sense pin pulses on oscillo-
scope.

v. Measure time between
pulses and invert the time
and multiply by 60 to get
the RPM.

vi. Verify that the RPM is at
1100 at maximum output
and verify each setting is
between 150 and 250 RPM
different from the last.

Y

Continued on next page
21

Table 5 – continued from previous page
Requirement Verification Verification

status (Y
or N)

6. Unity Simulation Program
(a) Achieve minimum of 60 frames

per second. (8 pts)

6. Verification
(a) Run Unity Simulation pro-

gram with testing personal rid-
ing the bike.

(b) Verify with frame rate dis-
played on the screen.

Y

7. VR System
(a) Achieve 1 hour of continuous

usage with fully charged bat-
tery. (2 pts)

7. Verification
(a) Fully charge the test phone.
(b) Run Unity Simulation pro-

gram and start the timer.
(c) Record the time when the test

phone turns off due to lack of
power.

Y

8. Smartphone Accelerometer
(a) Detect rotational acceleration

with error of 5% in all three
axis. (Yaw, Pitch, Row) (1
pts)

(b) Drifting error within 25 de-
grees in a period use of 20 min-
utes. (2 pts)

8. Verification
(a) i. Running testing program,

set the default orientation.

ii. Rotate phone 360 degrees
of the x-axis, verifying
with default orientation.

iii. Rotate phone 360 degrees
of the y-axis, verifying
with default orientation.

iv. Rotate phone 360 degrees
of the z-axis, verifying
with default orientation.

(b) i. Running testing program,
set the default orientation.

ii. Run the testing program
for 30 minutes.

iii. Return to default ori-
entation, measure angle
drifted.

Y

Continued on next page

22

Table 5 – continued from previous page
Requirement Verification Verification

status (Y
or N)

9. Handlebar Encoder
(a) Maximum rotation of 120 de-

grees in both directions (clock-
wise and counter clockwise) in
reference to neutral handlebar
position. (1 pts)

(b) Angle resolution of 5 degrees.
(2 pts)

(c) Angle accuracy with ± 3 de-
grees. (2 pts)

9. Verification
(a) i. Calibrate encoder using

neutral handlebar position
(Neutral position is when
the the handlebar is or-
thogonal to the frame, and
the front and back wheels
are in line).

ii. Rotate handlebar 120 de-
grees clockwise.

iii. Read voltage across po-
tentiometer using analog
read from microcontroller.

iv. Quantize voltage reading
into angle and verify with
protractor.

v. Repeat steps c and d turn-
ing the handlebar 120 de-
grees counterclockwise.

(b) i. Calibrate encoder using
neutral handlebar position

ii. Rotate handlebar 5 de-
grees in both clockwise
and counterclockwise di-
rection.

iii. Read voltage across po-
tentiometer using analog
read from microcontroller.

iv. Quantize voltage reading
into angle and observe
microcontroller readout
changes.

(c) i. Calibrate encoder using
neutral handlebar posi-
tion.

ii. Rotate handlebar 5 de-
grees in both clockwise
and counterclockwise di-
rection.

iii. Read voltage across po-
tentiometer using analog
read from microcontroller.

iv. Quantize voltage reading
into angle and verify with
protractor, ensure ± 3 de-
grees accuracy .

v. Rotate handlebar 120 de-
grees in both clockwise
and counterclockwise di-
rection.

vi. Read voltage across po-
tentiometer using analog
read from microcontroller.

vii. Quantize voltage reading
into angle and verify with
protractor, ensure ± 3 de-
grees accuracy.

Y

Continued on next page

23

Table 5 – continued from previous page
Requirement Verification Verification

status (Y
or N)

10. Wheel IR Sensor
(a) Detect wheel speed of the bike

with accuracy of ± 2 km/h. (2
pts)

(b) Minimum speed detection
achieve 3 km/h. (2 pts)

(c) Maximum speed detection
achieve 30 km/h. (2 pts)

10. Verification
(a) i. Install bike speedometer

to measure the speed of
bike wheel.

ii. Testing personal ride the
bike, with speedometer
reading of 2 km/h.

iii. Verifying bike wheel speed
reading from microcon-
troller.

iv. Testing personal ride the
bike, with speedometer
reading of 30 km/h.

v. Verifying bike wheel speed
reading from microcon-
troller.

(b) i. Install bike speedometer
to measure the speed of
bike wheel.

ii. Testing personal ride the
bike, with speedometer
reading of 3 km/h.

iii. Verifying bike wheel speed
reading from microcon-
troller.

(c) i. Install bike speedometer
to measure the speed of
bike wheel.

ii. Testing personal ride the
bike, with speedometer
reading of 30 km/h.

iii. Verfying bike wheel speed
reading from microcon-
troller.

Y

24

Appendix B Port Communication Character Control Code

The unity simulation contains C scripts that controls all simulation objects. The main functionality are the

simulation character control and microcontroller communication. The code that shown below is the main

update functions for bike control, which contains both functionality of character control and microcontroller

communication.

The Code below contains all variables that being initialized in the beginning of the program

using UnityEngine;

using System.Collections;

using System.IO.Ports;

public class BikeController : MonoBehaviour {

//check every frame for player input, and apply the input to bike movement

//checking input from BT in the furture.

//current input from keyboard

public static float speed; //speed of the bike

public float turn; //turning speed of thie bike

private char[] buf = new char[5] ;

private float slop; //the slop of the bike

SerialPort sp = new SerialPort("COM1", 9600); //creating the port that communicate with Arduino

private float translation; //the variable input from arduino

public static float angle; //the angle of thrust with respect to foward position

private float port_read; //variable to read from the port

private float angle_read; //the angle reading value

25

The function below is the starting function, which being ran once at the beginning of the simulation.

The starting function initialize all variables that will be used during the entire simulation.

/** Start()

* The start function being called once when simulation begins

*/

void Start()

{

angle = 0; //angle value initial as 0

port_read = 0; //port read initial as 0

translation = 0; //translation starting as 0

sp.Open(); //open the serial port

sp.ReadTimeout = 1;

buf[0] = ’\0’;

buf[1] = (char)1;

buf[2] = (char)2;

buf[3] = (char)3;

buf[4] = (char)4;

Application.targetFrameRate = 200; \\setting maximum frame rate cap to 200

}

The function below Update() which is being called during every frame being performed. The function

contains code to communicate with microcontroller using serial port, and setting the input data value to

character control. It also contains code for simulation character control, which include linear action and

x-direction rotation.

26

/**

* Update()

* The update function being called every frame

*/

void Update()

{

// check communication with Arduino

sp.DiscardInBuffer(); //discard USB buffer to reduce latency

sp.DiscardOutBuffer();

if (sp.IsOpen)

{

try

{

port_read = sp.ReadByte(); //reading 1 byte from port

if (port_read < 30)

speed = port_read ;

else

angle_read = port_read;

}

catch (System.Exception) { }

}

//sending slop variable to microcontroller ever second

if((int)Time.time % 1 == 0)

{

slop_translate(); //output slop to USB port

}

//calculating turnning angle and forwarding speed

angle = (angle_read - 152) * 0.7f;

translation = speed;

translation *= Time.deltaTime;

transform.Translate(0, 0, translation); //linear translation

if (translation != 0)

transform.Rotate(0, angle*0.1f, 0); //Rotation for turning

}

27

/** OnTriggerEnter(Collider other)

* Code that will be executed when the bike is running into other gameobjects

* Current function indicate running into coin and catch the coin, increase score

* destroy the coin

*/

void OnTriggerEnter(Collider other)

{

if (other.gameObject.CompareTag("coin"))

{

other.gameObject.SetActive(false);

fps_display.score += 10;

}

}

/** slop_translate

* function to map the bike orientation into code that can be read by microcontroller

* in order to set the resistance by linear actuator

*/

void slop_translate()

{

slop = transform.eulerAngles.x;

if (slop > 5 && slop <= 10) //down hill 1

{

sp.Write(buf, 1, 1);

}

else if (slop > 10 && slop < 200)

{ //down hill 2

sp.Write(buf, 0, 1);

}

else if (slop < 355 && slop > 345)

{ //up hill 1

sp.Write(buf, 3, 1);

}

else if (slop <= 345 && slop > 200)

{ //up hill 2

sp.Write(buf, 4, 1);

}

else

{

sp.Write(buf, 2, 1);

}

}

}

28

Appendix C Accelerometer Drifting Testing Code

using UnityEngine;

using System.Collections;

using System.IO;

using System.Text;

using System;

public class Testing : MonoBehaviour {

public GameObject GO;

private FileStream F;

private bool check;

private int cur_time;

// Use this for initialization

void Start () {

F = new FileStream("E:/VCR/Testing files/output2.csv", FileMode.Create, FileAccess.ReadWrite);

check = false;

cur_time = 0;

}

// Update is called once per frame

void Update () {

if((int)Time.time % 5 == 0 && Time.time <= 1200 && check == false)

{

Debug.Log(transform.eulerAngles.y);

byte[] toBytes = Encoding.ASCII.GetBytes(Convert.ToString(GO.transform.eulerAngles.y) + "," + Convert.ToString(Time.time) + "\n");

F.Write(toBytes, 0, toBytes.Length);

check = true;

cur_time = (int)Time.time + 1;

}

if((int)Time.time == cur_time)

{

check = false;

}

if (Time.time > 1200)

F.Close();

}

29

Appendix D Frame Rate Testing Code

public class fps_display : MonoBehaviour {

//frame rate calculation variable

int m_frameCounter = 0;

float m_timeCounter = 0.0f;

float m_lastFramerate = 0.0f;

public float m_refreshTime = 0.5f;

public GameObject display; //the gameobject of the display panel

private TextMesh number; //the textmesh that being on the display

private int fps;

private float time;

public static int score;

void start()

{

time = 0; score = 0;

}

void Update()

{

fps = (int)m_lastFramerate; //convert fps to int

time += Time.deltaTime;

//display.GetComponent<TextMesh>().text = fps.ToString(); //display onto screen

display.GetComponent<TextMesh>().text = ("fps " + fps +

" " + "Score : " + score +

" " + "km/h : " + BikeController.speed).ToString();

framerate(); //calculating the frame rate

}

//function to calculate the frame rate

void framerate()

{

//average framerate calculation, in 0.5second

if (m_timeCounter < m_refreshTime)

{

m_timeCounter += Time.deltaTime;

m_frameCounter++;

}

else

{

//This code will break if you set your m_refreshTime to 0, which makes no sense.

m_lastFramerate = (float)m_frameCounter / m_timeCounter;

m_frameCounter = 0;

m_timeCounter = 0.0f;

}

}

}

30

Appendix E PCB Layout

Figure 13: PCB top layer layout.

31

Figure 14: PCB bottom layer layout.

32

	Introduction
	Design
	Design Overview
	Top Level Block Diagram
	Power Module Unit
	Voltage Regulator

	Control Module Unit
	Microcontroller

	Sensor Module Unit
	Handlebar rotary Encoder
	Phone Accelerometer
	Wheel IR Sensor

	VR Module Unit
	Unity5 Simulation program
	Unity Remote 4

	User Interface Unit
	Roller/Resistance System
	Fan Controller

	PCB Layout
	Design Revisions

	Design Verification
	Power
	Voltage Regulator
	Fan Controller

	Control
	UART Serial Communication

	Sensors Module Unit
	Smartphone Accelerometer
	Handlebar Encoder
	Wheel IR Senor

	VR Module Unit
	Simulation

	User Interface Unit
	Resistance System

	Cost
	Parts
	Labor
	Grand Total

	Conclusion
	Accomplishments
	Ethical considerations
	Future work

	Reference
	Requirement and Verification Table
	Port Communication Character Control Code
	Accelerometer Drifting Testing Code
	Frame Rate Testing Code
	PCB Layout

