Project

# Title Team Members TA Documents Sponsor
70 SnapLog Camera Necklace
Fei He
Shuai Huang
Tianshu Wei
Abhisheka Mathur Sekar design_document1.pdf
final_paper1.pdf
photo1.jpg
photo2.png
photo3.png
presentation1.pdf
proposal2.pdf
## Team members
- Tianshu Wei (tw27)
- Fei He (xh40)
- Shuai Huang (shuaih4)


# Problem

Let's face it: recording your daily activity is hard. When I grew up as a kid, I hate those homework, you know, that asks you to describe what you have done during a day. I think it is such a repetitive, exhausting, and boring work. It takes so much of my precious time to be better wasted somewhere else.

# Solution

SnapLog is a camera that you can wear on your neck that is lightweight, versatile, and good looking. The device is designed to create a timelapse of your daily activities. To do so, the camera will take a photo in a interval of a few minutes, and sends it over to your phone wirelessly. The phone app will compile them into a video and encode it at the end of the day.

# Solution Components

## Subsystem 1

Communication: This part of the system communicates with the phone software that transfers the image captured by the camera.

## Subsystem 2

Imaging: This part of the system communicates with the camera module and captures images. It also applies algorithms to enhance the photo if necessory.

## Subsystem 3

Sensing: This part of the system determines when it is the best opportunity to take the photo or adjust the photo based on lighting and environment conditions. It also include component such as RTC to remember time and send wake signals.

## Subsystem 4

Power: This part of the system controls the power sent to the rest of the system. It handles battery charging and protection, sleep, and power sequencing to different modules.

## Subsystem 5

Phone software: this part of the system runs on a smartphone of the user that handles the video production or photo storage. It communicates with the camera to receive the photo.

# Criterion For Success

- The device is capable of automatically capturing image every few minutes.
- The device is capable of power management.
- The device is capable of wirelessly transfering files to a smartphone.
- The mobile software is able to create a video using data from the camera device.
- The device is under 50g.
- The device's main controller is capable of sleeping and has a net power consumption lower than when running normally during a period of time.
- The device uses a microcontroller.
- We designed the PCB and produced it.

Laser Harp MIDI Controller with Musical Articulations

Yingxi Hai, Hanze Tu

Laser Harp MIDI Controller with Musical Articulations

Featured Project

Electronic music concerts usually need eye-catching visual aids to create a certain atmosphere. Laser musical instruments is a great way to do this. We have been thinking of this project for a while and it was ECE445 that made this laser harp come true. The novelty of this project is that the harp-like laser device mainly focuses on playing articulations with laser and sensors, as a true universal MIDI controller, to control timbres that are synthesized or sampled. Articulations include piano/forte, vibrato, tremolo, and portamento. With the help of Professors and TAs, we learned how to pick right the components, design PCB, soldering, and program microcontroller. Those skills are not only useful in this class but also really important to electrical engineers. Also, we learned how to use individual strengths, combined with effective teamwork, in the pursuit of meaningful goals.

Project Videos