# Title Team Members TA Documents Sponsor
63 Bluetooth Heater (Burner)
Navin Ranganathan
Shaunak Fadnis
Varun Kowdle
Zicheng Ma design_document2.pdf
# Bluetooth Heater (Burner)
# Team Members:

- Varun Kowdle (vkowdle2)
- Shaunak Fadnis (sfadnis2)
- Navin Ranganathan (navinr2)

# Problem
Each day, millions of people drink warm coffee, tea, or soup. However, one common challenge faced is maintaining the ideal temperature over time, especially in busy environments or during extended periods of consumption. Moreover, traditional methods like reheating in microwaves can degrade the quality of the drink or food, while passive insulating containers often fail to maintain the desired temperature for long. The repeated process of reheating can be time-consuming and energy-inefficient, making it a less than ideal solution for both home and office settings. This results to a compromised experience, as the taste derived from hot beverages and soups is significantly tied to their warmth.

# Solution

To address this issue, we propose to make a heating pad with bluetooth capabilities so that users can adjust temperature to three settings. This allows users to change the heating pad to their ideal temperature to the requirements of the beverage or soup. Integration of bluetooth allows for a convenient and remote control, enabling users to adjust settings directly from their smartphones. More importantly, we want to make sure that the pad is durable and energy efficient to support user needs.

# Solution Components:

## Subsystem 1
App (Bluetooth Connection) :
A bluetooth module will be used to communicate with a personal device to control the device. The user can set the temperature/heating amount for the pad(s), within a restricted amount. It will also provide feedback on what is at what temperature, and how long it has been (with possible warnings for a quality drop if it has been long enough.
Bluetooth Module (ex: RNBD451 - Microchip Bluetooth 5.2 Module)
## Subsystem 2
Heating Pad:
We would have a resistive heating element similar to a coil that would heat a pad for people to place cups, bowls, etc.. Using a temperature sensor we will feed data back to our control unit that also communicates with the app to see if any changes have been made.
Temperature Sensor
Heating Element Options:
Peltier Module (for adding cooling)
Inductive Coil

## Subsystem 3
Power Management:
Ensures the device operates efficiently, minimizing energy consumption while providing adequate power to the heating element. Components: Battery (if portable): A high-capacity, rechargeable battery that supports extended use on a single charge.Techniques such as automatic shutdown after a period of inactivity, or adaptive temperature control to reduce power usage when the target temperature is maintained. Similarly, bluetooth module to adjust temperature based on user preference

# Criterion For Success
The device must heat beverages or soups to the selected temperature with high accuracy and maintain the temperature within a narrow margin of error. Moreover, the device should maintain stable Bluetooth connectivity within a typical range, allowing for seamless communication between the heating pad and the user's mobile device.Likewise, the heating pad should use energy efficiently, reducing the need for frequent recharging (if battery-powered) or minimizing electrical consumption (if corded). Lastly, we must incorporate safety features to prevent overheating of both the pad and the beverage/soup, ensuring the device is safe to touch and does not pose a risk of burning the user or damaging surfaces.

Musical Hand

Ramsey Foote, Thomas MacDonald, Michelle Zhang

Musical Hand

Featured Project

# Musical Hand

Team Members:

- Ramesey Foote (rgfoote2)

- Michelle Zhang (mz32)

- Thomas MacDonald (tcm5)

# Problem

Musical instruments come in all shapes and sizes; however, transporting instruments often involves bulky and heavy cases. Not only can transporting instruments be a hassle, but the initial purchase and maintenance of an instrument can be very expensive. We would like to solve this problem by creating an instrument that is lightweight, compact, and low maintenance.

# Solution

Our project involves a wearable system on the chest and both hands. The left hand will be used to dictate the pitches of three “strings” using relative angles between the palm and fingers. For example, from a flat horizontal hand a small dip in one finger is associated with a low frequency. A greater dip corresponds to a higher frequency pitch. The right hand will modulate the generated sound by adding effects such as vibrato through lateral motion. Finally, the brains of the project will be the central unit, a wearable, chest-mounted subsystem responsible for the audio synthesis and output.

Our solution would provide an instrument that is lightweight and easy to transport. We will be utilizing accelerometers instead of flex sensors to limit wear and tear, which would solve the issue of expensive maintenance typical of more physical synthesis methods.

# Solution Components

The overall solution has three subsystems; a right hand, left hand, and a central unit.

## Subsystem 1 - Left Hand

The left hand subsystem will use four digital accelerometers total: three on the fingers and one on the back of the hand. These sensors will be used to determine the angle between the back of the hand and each of the three fingers (ring, middle, and index) being used for synthesis. Each angle will correspond to an analog signal for pitch with a low frequency corresponding to a completely straight finger and a high frequency corresponding to a completely bent finger. To filter out AC noise, bypass capacitors and possibly resistors will be used when sending the accelerometer signals to the central unit.

## Subsystem 2 - Right Hand

The right subsystem will use one accelerometer to determine the broad movement of the hand. This information will be used to determine how much of a vibrato there is in the output sound. This system will need the accelerometer, bypass capacitors (.1uF), and possibly some resistors if they are needed for the communication scheme used (SPI or I2C).

## Subsystem 3 - Central Unit

The central subsystem utilizes data from the gloves to determine and generate the correct audio. To do this, two microcontrollers from the STM32F3 series will be used. The left and right hand subunits will be connected to the central unit through cabling. One of the microcontrollers will receive information from the sensors on both gloves and use it to calculate the correct frequencies. The other microcontroller uses these frequencies to generate the actual audio. The use of two separate microcontrollers allows for the logic to take longer, accounting for slower human response time, while meeting needs for quicker audio updates. At the output, there will be a second order multiple feedback filter. This will get rid of any switching noise while also allowing us to set a gain. This will be done using an LM358 Op amp along with the necessary resistors and capacitors to generate the filter and gain. This output will then go to an audio jack that will go to a speaker. In addition, bypass capacitors, pull up resistors, pull down resistors, and the necessary programming circuits will be implemented on this board.

# Criterion For Success

The minimum viable product will consist of two wearable gloves and a central unit that will be connected together via cords. The user will be able to adjust three separate notes that will be played simultaneously using the left hand, and will be able to apply a sound effect using the right hand. The output audio should be able to be heard audibly from a speaker.

Project Videos