Project

# Title Team Members TA Documents Sponsor
16 Handheld Rocket Tracker
Ben Olaivar
Manas Tiwari
Max Kramer
Sanjana Pingali final_paper1.pdf
other1.pdf
proposal3.pdf
video
# Handheld Rocket Tracker

Team Members:
- Ben Olaivar (olaivar3)
- Max Kramer (mdk5)
- Manas Tiwari (manast2)

# Problem

Locating a rocket after a launch can be difficult. When the rocket reaches apogee (peak height), it deploys parachutes and glides back to the ground, often landing several miles away from the launch site (check out this video from the Illinois Space Society). Some tracking solutions exist, such as altimeters and radio beacons, however they all suffer from similar issues of being clunky, unintuitive, or expensive. Radio beacons don’t send out their exact location, and are tracked by following the strength of their signal, which only gives the general direction of the beacon. Altimeters send out their exact location, but are costly ($380+) and often require a laptop to receive their position, which is inconvenient to carry during a search. A few handheld trackers exist, however they are costly ($475+), difficult to reconfigure, and unintuitive. Additionally, all of these solutions are limited to 1 device.

# Solution

We want to make a 2-part tracking system: A tracking beacon (referred to as a “puck” or “beacon”), and a handheld tracking device (referred to as “tracker”). The beacon will be placed inside the rocket, and will continuously transmit its coordinates. On the receiving end, the tracker will compare its own GPS location with the coordinates from the beacon. To make this intuitive, the tracker will display the direction (using an arrow on the screen), as well as the distance to the beacon.

# Solution Components

## Subsystem 1: Microcontroller Processor (both beacon and tracker)
This will house the codebase for this project. This will mainly be to display to the screen of the tracker and handle button inputs by the user.

## Subsystem 2: TRACKING SENSORS
This subsystem consists of all required sensors/peripherals required for acquiring the location and direction from the tracker to the beacon
- **GPS Module (both):** To get longitude and latitude values of both components
- **GPS Antenna (both):** For connecting to satellites.
- **Magnetometer(tracker):** For measuring the heading of the user.

## Subsystem 3: COMMUNICATION SYSTEM
The entire project depends on successful communication between the beacon(s) and the tracker. Therefore we will need the following components to set up an ability for the tracker to search out certain frequencies and for the beacon(s) to send out the same frequencies.
- **Transceiver (both):** Required generating signal between beacon and tracker
- **Antenna (both):** Mid-ranged antenna capable of transmitting/receiving signals between 3-5 miles. Can be replaced in future with better antennas.

## Subsystem 4: BATTERY AND POWER SUPPLY
Create a battery management system that supplies consistent 3.3V to the necessary sensors and MCU.
- **LiPo Batteries (tracker):** 3.7V. Compact, have long battery life, and are readily available.
- **Voltage Regulator (tracker):** Regulating voltage from battery pack to sensors/MCU (3.3V)
- **Battery Holder (tracker):** Holding batteries

## Subsystem 5: DATA DISPLAY
This will simply be the screen we use to display all needed information for the user to track their beacons using the tracker
- **E-Ink Display:** For displaying compass, frequency, and distance data

# Criterion For Success

- Primary Criterion: Demonstrate that the “Beacon” or “Puck” can be found by an end user being guided by the “Tracker”’s on-screen information

- Additional Criterion: Demonstrate the ability to change frequency at which the “Beacon” and “Tracker” Communicate

# Github Link

https://github.com/ben-olaivar/ECE445_software

The Marching Band Assistant

Wynter Chen, Alyssa Louise Licudine, Prashant Shankar

The Marching Band Assistant

Featured Project

NetID/Names

wynterc2 (Wynter Chen), alyssal3 (Alyssa Licudine), shankar7 (Prashant Shankar)

Problem

Drum majors lead and conduct marching bands. One of their main jobs is to maintain tempo for the musicians by moving their hands in specific patterns. However, many drum majors, especially high school students, need to learn how to conduct specific tempos off the top of their head and maintain a consistent tempo without assistance for performances. Even those with musical experience have difficulty knowing for certain what tempo they're conducting without a metronome.

Solution Overview

Our project consists of an arm attachment that aids drum major conducting. The attachment contains an accelerometer that helps determine the tempo in beats per minute via hand movement. A display shows the beats per minute, which allows the drum major to adjust their speed as necessary in real time. The microcontroller data is wirelessly transmitted, and a program can be downloaded that not only visualizes the data in real-time, but provides an option to save recorded data for later. There is also a convenient charging port for the device.

This project is a unique invention that aims to help marching bands. There have been previous projects and inventions that have also digitized the conducting experience, such as the Digital Conducting Baton from Spring 2015. However, these have been in the form of a baton rather than a glove, and are used to alter music files as opposed to providing feedback. Additionally, orchestra conductors use very delicate motions with a baton, while drum majors create large, sharper motions with their arms; thus, we believed that an arm attachment was better suited for marching band usage. Unlike other applications that only integrate digital instruments, this project seeks to assist live performers.

Link to RFA: https://courses.grainger.illinois.edu/ece445/pace/view-topic.asp?id=37939

Project Videos