Handheld Rocket Tracker

By
Benjamin Olaivar

Maxwell Kramer

Manas Tiwari

Final Report for ECE 445, Senior Design, Spring 2024

TA: Sanjana Pingali

1 May 2024

Project No. 16

Abstract

The Handheld Rocket Tracker seeks to make a more affordable and convenient method of
recovering a rocket after an amateur rocket launch. In this two-part system, a beacon is placed
inside the rocket, which transmits its gps position. A handheld tracker receives that signal, and
guides the user to the beacon, acting as a compass, however instead of pointing north, it points to
the beacon. Unfortunately the handheld device was not successfully completed on a PCB, which
led to ergonomic issues, however the core functionality of the device was successful.

Contents

L INErOAUCTION ..ot e 4
1.1 High Level Requirementsocviviiiiiiiiiiiiiiii e eiiaeenns 4
0 I TS . 5
2.1 MCU SUDSYSIEIM .. .uutiiiteeei e e e e e e e e e eae e enaans 8
2.1.1 Beacon MCU ..., 8
2.1.2Tracker MCU ... e, 8
2.1.3 Chip Selected and Challenges Facedo.l. 9
2.2 SeNnSOT SUDSYStEIMuutiiitt it eaas 9
2.3 Communication SUbSYStEMccevviiiiiiiiiiii e, 10
2.3.1 Beacon CommuniCationcovviiiiiiiiiiiiiiinninnnnnnnnnnn, 10
2.3.2 Tracker CommuniCationc.ouuuveiiiieeeeeiiiiiiinnenneenns 11
2.4 POWET SUDSYStEIM ...ttt e e, 11
2.5 User Interface SubSyStemoouvviiiiiiiiiiii i, 11
2.5.1 Data DIisplayooviiiniiiii i 12
252Push Buttons ... 13
3. Design Verificationc.oviiniiiiii i e 14
3.1 MCU Vertflcationoooiiiiiiiii e, 14
3.2 Sensor VeriflCationueiiiiiiiiiii e 14
3.3 Communication Verificationccoooviiiiiiiiiiiiiiiiiiiiiinnn.. 14
3.3.1 Beacon TX to Tracker RX ..., 14
332 Tracker TXtoBeacon RX ..., 14
3.4 POWer VErifiCationuuuueeniiiiiii i, 15
3.5 User Interface Verificationcoooiiiiiiiiiiiiii i, 15
0 1 - S 16
T N o) o £ 16
i IF: oo) 17
A3 Scheduleove 17
S CONCIUSION ..ttt 18
5.1 Accomplishmentso 18
5.2 UNCEITAINTIES . .uuiieiee ettt ettt ettt et e e 18
5.3 Ethical considerationsuuiiiiiiiiiiii 19
SAFULUIE WOTK ..o e 19
R OICNCES ..ottt 20

1. Introduction

The Illinois Space Society is an amateur rocketry team here on campus, which launches a
rocket 1-2 times a semester. Arguably the most important part of these launches is the recovery
of the rocket. The team has committed considerable time and money into this project, and wants
to retrieve their investment. Launches can reach altitudes of 60,000, where the rocket will deploy
a parachute and drift back to the ground. It’s nearly impossible to track a rocket with eyesight at
this altitude (see Figure 1 for the rocket POV). Commercially available trackers exist, however
they’re typically clunky, expensive and unintuitive, making it inconvenient to use.

To solve this issue, we have designed a Handheld Rocket Tracker, which consists of 2
parts: First is the beacon module, which is placed inside the rocket and transmits its GPS location
at all times. Second is the handheld tracker, which receives this transmission, and guides the user
to the beacon. Our solution attempts to make a more affordable and intuitive method of tracking
amateur rockets.

Figure 1: Rocket POV at altitude of ~10,000ft. Source: Illinois Space Society 2021 October Launch [1]

1.1 High Level Requirements

1. Successfully transmit positional and state data from the beacon to the handheld tracker,
and handheld tracker should successfully transmit commands to the handheld beacon. See
outlined in the “Packet Breakdown” under Software Design.

2. Have the capability for the user to switch the frequency of both the beacon and the
handheld tracker via user input on the handheld tracker device.

3. Accurately show the distance from the beacon within 5 meters, and point the user in the
correct direction of the beacon within 5 degrees. This information should be shown via
the screen in the User Interface, and behave similar to a compass, however pointing
towards the beacon instead of pointing North.

4

2 Design

The high-level design and subsystems for the beacon and handheld tracker are shown in
Figure 2, and their physical concepts can be seen in Figure 5. The beacon, seen in Figure 4, has 4
primary subsystems: mcu, sensor, communication, and power. The mcu subsystem is responsible
for handling communication between subsystems, and making any necessary calculations. The
sensor subsystem, consisting of a gps module, is responsible for collecting positional data for its
respective device. The communication subsystem handles communication between the beacon
and the tracker. This communication is done using the LoRa communication protocol within the
433MHz band. Finally, the power subsystem takes a variable voltage input of 3.7 to 4.2V, and
steps it down to 3.3V, which powers the entire device.

Note the handheld system, seen in Figure 5 is identical to the beacon, however with the
addition of the user interface subsystem. The user interface consists of buttons and a screen,
which take inputs from the user to navigate the menu, and guide the user to the beacon.

@l Battery
mm 3.3V
@l SPI (wired)
mm [2C (wired) Handheld System _ _ _ _
& Ul i/o (’ \
[t | il
- ~1 LoRa Data (wireless) | S |
| Subsystem :
+
| Transceiver | SAM-M3Q I
| I Module I
o —
! | | 12C I
| SAM-M8Q Transceiver T | I
| Module | I |
| | | McU I
I : | . . :
| 12C MCU SPI | C: Mji
| :3.3\5 | | Buttons |
I | | y .
|][o |
||| LipoBatiery 3.3V | | 3.3V < LiPo Battery | |
| (3.7-4.2v) Regulator | | User Interface Regulator (3.7-4.2v) |
Subsystem
| Power Subsystem J | Y s CrTE R |
/
N -~ N ___—_—__—_—_—_—_—_——— -

Figure 2: Subsystem Block Diagram

Antenna Connector

Beacon Housing

‘/ (3d Printed)

Figure 4: Beacon Concept Design

Antenna Connector

200m away

18650 Battery Pack

Compass
Display

User Interface
Keys

Figure 5: Handheld Tracker Concept Design

LoRa Communication

Beacon
(inside rocket)

Handheld Tracker

Figure 6: General Overview Diagram

Figure 7: Final Demo Design

g
g
ay
dy
el
ay
s
a

200000

x|

2.1 MCU Subsystem

The MCU subsystem is responsible for managing communication between the various
subsystems, as well as making relevant calculations. While the beacon and handheld tracker are
very similar, the MCU on each has slightly different responsibilities.

2.1.1 Beacon MCU

On the beacon, the MCU is responsible for receiving positional data from the sensor
subsystem in the form of Longitude and Latitude via I12C, as well as receiving commands from
the handheld tracker. Upon landing, the parachute, which is still deployed, may get caught in the
wind and drag the rocket. To account for this, the beacon updates its gps coordinates every 3
seconds, and transmits the new data to the handheld tracker via the Communication Subsystem.
Additionally, the user may need to change the transmission frequency of the tracker. This isn’t
uncommon, considering the narrow band that LoRa operates in, and the high volume of teams at
rocket launches, which may be using the same frequency to track their own rockets. The MCU
listens for a “Change Frequency” command, and changes frequencies according to user input.
Further explanation of frequency changes is detailed in the Communication Subsystem
description.

2.1.2 Tracker MCU

The MCU on the handheld tracker has many of the same responsibilities, however with a
few notable differences. The handheld device has its own gps, which updates its position as the
user walks around. It compares its own GPS coordinates with the coordinates received from the
beacon, and calculates the distance and angle between the two devices. Details of how this
information is displayed are detailed in the User Interface Subsystem description, however the
basic equation to calculate the angle between the two points is seen below.

|ALatitude|)

6 = arctan(|ALongitude|

To ensure an accuracy of 5 meters, the TinyGPSPlus library was chosen to calculate the
distance between the two devices, as seen in Figure 8 below. It was chosen not to use simple trig
for this variable, as it could get increasingly less precise as the distance between the beacon and
the tracker grew, hence the use of an external library.

TinyGPSPlus::distanceBetween(atl, longl, lat2,

delta = (longl-long2);

sdlong = sin(delta);

cdlong = cos(delta);

latl = (latl);

(lat2);
slatl = sin(latl);
clatl = cos(latl);
slat2 = sin(lat2);
clat2 = cos(lat2);
delta = (clatl * slat2) - (slatl * clat2 * cdlong);
delta = sq(delta);

delta +=sq(clat2 * sdlong);

delta = sqrt(delta);

denom = (slatl * slat2) + (clatl * clat2 * cdlong);
delta = atan2(delta, denom);

return delta * 6372795;

|
s

Figure 8: TinyGPSPlus Distance between two coordinates function [2]

2.1.3 Chip Selected and Challenges Faced

To accomplish this, we chose to use the Atmega328p, which is the same chip as the
arduino uno. We chose this chip because of its simplicity and ease of use, however this ended up
coming back to hurt us. This chip only has 2KB of RAM, which is incredibly restrictive,
especially considering the fact that our screen requires a minimum of 1KB to operate. This small
memory size became even more apparent as we incorporated our GPS module, which was made
by SparkFun. The SparkFun gps library [3] was designed to be a “cover all” for all of their GPS
devices. This means it wasn’t really meant to be efficient, it was just meant to get the job done.
This was a problem for us because we were running out of memory. The initial SparkFun library
took up 76% of our total RAM. To solve this problem, we rewrote the GPS library, removing any
unused global variables and functions, and deleting debug prints. By doing this, we got the GPS
down to only 42% of our memory, which allowed us to use both the GPS and the display at the
same time.

2.2 Sensor Subsystem

The Sensor subsystem is responsible for gathering positional data from the gps module
and sending it to the MCU via I2C. Conveniently, we have found a sensor that has everything we
need built into 1 unit: the SAM-M8Q. The SAM-MS8Q has a builtin GPS module and antenna for
communicating with local satellites, so no external antenna was needed. The SAM-M8Q
breakout can be seen in Figure 9.

Figure 9: SAM-MS8Q breakout board with built-in ceramic antenna [4]

2.3 Communication Subsystem

The communication subsystem is the system responsible for handling communication
between the beacon and the tracker. Without this two-way communication we would not be able
to track the rocket itself as we would lack comparable GPS data. This subsystem consists of two
identical parts. Each is a LoRa RFM96 radio, one located on each of the beacon and tracker. The
beacon will generally give the tracker its GPS location while the tracker will, on user request,
change both itself and the beacon’s operating frequency. The radios can operate between 433 and
434.8 MHz and can operate well between 0.5 to 5 miles [5]. The radios interact with the MCU
using SPI. It should be noted that all data being sent needs a valid FCC license attached due to
the operating frequencies being non-general purpose wavelengths.

2.3.1 Beacon Communication
The beacon’s LoRa module has one transceiver action and one receiver action to perform.

For transceiving, the beacon will collect GPS data and package it within the Sensor and
MCU subsystems. After the data is ready for transmission the LoRa code library will be used.
Within it are three functions that package data for transmission. These are the beginPacket(),
write(), and endPacket() functions which collectively in sequence create and send out a packet of
data [6]. Once the data is packaged it will be transmitted on the current frequency set for the
beacon. This occurs once every three seconds in order to not overload the tracker with incoming
data.

For receiving, every cycle of the main code a parsePacket() is called from the LoRa
library. This parses the data into a form that can be manipulated and returns the bytes it received,
or 0 if no data was found. The beacon will specifically only ever receive a packet containing the
value of a new requested frequency from the user via the tracker. This frequency is extracted and
checked for its value to be in the mentioned valid range. If yes then we stop accepting new
frequencies for 5 seconds. This reason will be discussed in the next section for the tracker
portion, Once this is validated we set the internal frequency and begin transmitting GPS data
again.

10

2.3.2 Tracker Communication
The tracker’s LoRa module also has one transceiver purpose and one receiver purpose.

For transceiving, the tracker will only do this for when a new frequency is requested by
the user. When this happens we transmit the new requested frequency once every second for 5
seconds. This is because we want to make sure that the beacon doesn’t miss the singular request
and so we send redundant requests. This is why, as mentioned above, we halt accepting new
frequencies for 5 seconds after a valid is received. Testing showed that many requests would get
jumbled and cause the beacon to switch to an unwanted frequency. The data is packaged the
same way as mentioned above within the beacon.

For receiving, the tracker will use the same parsePacket() LoRa function discussed
before. On a valid packet being found, its contents are read into a dedicated struct locally and
saved in other variables for the MCU’s use.

2.4 Power Subsystem

The power subsystem is responsible for intaking the voltage available from a power
source and converting it to a usable voltage for every other subsystem. This system is present in
identical forms in both the beacon and the tracker. The system has two main parts. The original
design consisted of 18650 LiPo batteries and a LM3671 3.3V buck converter.

The LiPo batteries would, based on its charge, provide 4.2-3.2V to the input of the buck
converter [7]. The batteries would’ve been removable and would allow end users to charge them
themselves and swap when needed. The batteries were not, however, usable in the final form of
the project. Instead they were replaced by the 5V output line of an arduino uno dev board, which
received its power separately. This will be discussed in depth within the power subsystem
verification section later on in this report.

The LM3671 buck converter was responsible for converting input voltage to 3.3V output
for the rest of the systems in both the beacon and tracker. This was chosen over a linear regulator
for concerns about overheating during rocket launch. This specific one was chosen for its ability
to handle up to 600 mA of current draw [8]. This draw is well above expected draw from all the
other systems and therefore is ideal for our purposes.

2.5 User Interface Subsystem

This subsystem facilitates user interaction with our project. It allows the user to access
relevant data pertaining to tracking the beacon (i.e. the distance and direction), and takes in user
inputs where and when required. It consists of a display to show data relevant to the user, and
push buttons to enable navigation and provide inputs.

The code to display text onto the screen is written in C++, and uses helper functions from
the Adafruit GFX.h and Adafruit SSD1306.h libraries to do so. In addition, the push buttons are

11

polled continuously in a loop to detect user action. The logic of printing menu and sub-menu
options along with the logic to navigate through them are also coded in C++.

2.5.1 Data Display

The screen used for our project is a 400 x 240 pixels Adafruit Sharp Memory Breakout
display. It defaults to displaying the current menu, and switches to displaying other sub menus as
per the user’s directions.

The distance and direction to the beacon (computed by the MCU) is displayed within the
Compass Menu. The distance is displayed as text, while the direction of the beacon is shown in a
compass-like format, where the needle would be pointing towards the beacon. See Figure 10 for
more information.

| Distance: 155m

Figure 10: Compass Menu displaying Distance and Direction to the Beacon

The display screen is crucial in most of our verification procedures for the rest of our
subsystems. Hence, it was of utmost importance that it worked correctly during our project’s
progress.

During our project, we needed to resolve multiple issues regarding the display. The first
issue arose when the screen we had initially chosen took up more than 50% of our chip’s
memory. Our solution at the time was to switch to one with a smaller size and resolution.
However, we later realized that the new screen chosen would not be physically capable of
displaying the direction to the beacon with a precision of 2 degrees. This led us to making a

12

change in our high level requirements to go from displaying the direction with a precision of 2
degrees to 5 degrees instead.

During final rounds of testing, we noticed that the screen was chipped. This caused the
screen to not display anything at all, and forced us once again to make a switch to the 400x240
Adafruit display. This switch required us to rewrite major portions of the UI code, due to the fact
that this screen used a different set of drivers (Adafruit SharpMem.h instead of
Adafruit SSD1306.h). We ordered the same screen, but it did not reach in time before the final
demo.

2.5.2 Push Buttons

The last component of the Ul subsystem deals with allowing the user to provide inputs in
order to navigate to the desired menu to view its relevant information. This was implemented
with 4 buttons corresponding to Up, Down, Select (Enter) and Main Menu selection (see Figure
11). Menu navigation is achieved using these buttons, with UI code running in parallel to ensure
the correct information is being displayed as requested by the received inputs.

The “up” and “down” buttons are mostly used to change the highlighted option. This
behavior differs in the Frequency Change menu, where they are used to increment/ decrement the
displayed frequency by 0.1 MHz. The “enter” button signifies confirmation to enter the
highlighted menu, or to confirm an action (such as setting the frequency). The “main menu”
button is used to quickly navigate back to the default main menu display.

Display

Figure 11: Push Buttons and their functionality

13

3. Design Verification

3.1 MCU Verification

The verification process for the MCU was primarily focused on getting a response from the chip
on the PCB. During our testing, we unfortunately couldn’t get the MCU on the PCB to respond
to our programmer. We first soldered the MCU and external 16 MHz clock onto the PCB, and
attempted to upload to the board using Arduino as ISP. Unfortunately during this process, we
never got a response from our chip. Testing showed that the external 16 MHz clock was not
oscillating. After discovering this, we instead used the internal 8MHz clock. Again, we got no
response from the MCU. Unfortunately we still got no response from the chip. In the end we
decided to omit the PCB in order to focus on fulfilling the high level requirements of our project.

3.2 Sensor Verification

To ensure accurate distance calculations between the beacon and tracker, we required this GPS to
be accurate within 5 meters. To validate this requirement, we compared the coordinates received
by the GPS to some known locations on campus. We used the coordinates of the spire on Eng
quad as a baseline. We powered on the GPS, and compared the received coordinates of the gps to
the spire, and made sure our location was accurate.

3.3 Communication Verification

The communication subsystem has two main areas of verification. The first is making
sure beacon transceiving and tracker receiving are working together. The second is making sure
beacon receiving and tracker transceiving are working together.

3.3.1 Beacon TX to Tracker RX

To verify a beacon to tracker transmission of the beacon’s GPS data, we have three steps.
First, we have beacon print its GPS data it has and send it out as a packet every three seconds.
This print out occurs on a connected serial port from the arduino uno the code is housed in.
Second, we print out any received packets and their contents on a second serial port for the
tracker when it sees any incoming data. This is to verify data is consistent between the devices.
Finally, since we had Ul working at the time we began RXTX testing, we had the MCU use the
data as intended and check if the Ul gives proper distance and direction. If yes, then the beacon
to tracker data transmission is working.

3.3.2 Tracker TX to Beacon RX

To verify a tracker to beacon transmission, we do the same testing plan as described in
3.3.1 above with some small changes. We do add one additional step at the end regarding
matching the frequencies. After the beacon receives the new frequency and begins operating at it
we need to check that communication is still active, mainly to see if both devices got the same
new frequency. Therefore we hold the user in the current menu and wait to see if a packet of data

14

is received by the tracker. If it does then they both are at the new frequency. Otherwise, different
frequencies have been applied and we therefore have failed.

3.4 Power Verification

Power verification was short but slightly complicated by the need to forgo the PCB. With
the project running on a breadboard system with the arduino uno dev board, we could not rely on
battery power. The dev board needs 12V-5V input, lower than the 4.2V maximum of the LiPo
batteries. To work around this, the arduino was powered via usb connector to a laptop that was
needed for serial port printout for verification. The 5V output pin of the dev board was then fed
into the input of the buck convertor. This convertor then supplied its intended 3.3V output to the
rest of the subsystems and was successful in powering them without any issues.

We also debugged the buck’s themselves. The first one we received was determined to
have an internal error as power supply and voltmeter testing revealed no output voltage.
Replacements ordered did work as intended on the first try.

3.5 User Interface Verification

Testing of the display screen was largely a straightforward process. We first needed to
ensure that the screen was working. This was done by powering the screen and displaying some
text on it. Once its functionality was confirmed, we tested it further by displaying the distance
and directional data, and other details as and when required.

Testing of the push button was done by manually pressing the buttons, and displaying
different text for each corresponding push button. Each button was pressed independently several
times to ensure their expected behavior.

Menu navigation was tested by providing inputs, and visually verifying that the menu
navigation and selection were working as expected.

15

4. Costs

4.1 Parts
Table 1: Parts Costs
Part Manufacturer Individual Cost Quantity Total Cost ($)
®
LM3671 3.3V Buck Adafruit $4.95 2 $9.90
Converter
Adafruit RFM96W Adafruit $19.95 2 $39.90
LoRa Radio Transceiver
Monochrome 0.96"
128x64 OLED Graphic Adafruit $17.50 1 $17.50
Display
ABLS-16.000MHZ-B2-
T Abracon LLC $0.45 2 $0.90
CRYSTAL
16.0000MHZ 18PF
SMD
CONREVSMA002-G TE Connectivity Linx
$3.74 2 $7.48
CONN RP-SMA RCPT
R/A 50 OHM PCB
Sam M8Q GPS Sparkfun
$42.95 2 $85.90
Switch Tactile SPST Shruter INC
$0.26 20 $5.20
RF ANT 433MHZ RF Solution
WHIP TILT $5.69 2 $11.38
ATMega 328p Microchip Technology
$2.74 2 $5.48
10K OHM Resistor Stackpole Electronics
$0.10 10 $1.00
1K OHM Resistor Stackpole Electronics
$0.10 10 $1.00
22pF Capacitor Murata Electronics
$0.10 10 $0.29 (Bulk order)
0.1uF Capacitor Murata Electronics
$0.10 10 $0.19 (Bulk order)
4.7uF Capacitor Murata Electronics
$0.12 S $0.60
10uF Capacitor Murata Electronics
$0.10 10 $0.19 (Bulk order)

Total

$186.91

16

4.2 Labor

With an hourly rate of $50 per hour, as used and approved of in this project’s design
document, and assuming 15 hours per week over 15 weeks, we can get the following labor cost.

$50/hr * 15 hr/week * 15 weeks * 3 members * 2.5 = $84,375

4.3 Schedule
Table 2: Initial Schedule

Week Task

February 26th - March 4th Order parts for prototyping (Max)

Start prototyping with existing components (All)

Research Transceiver communication (Manas)
Start PCB design (Max & Ben)
March 4th - March 11th Begin 3D print designing (Ben)

Successfully establish transceiver communication (Manas & Ben)

Finish Ist iteration PCB design (Max & Ben)
PCB Order (All)

March 11th - March 18th Print first versions of 3D printed case prototypes (Max & Ben)

Finish the baseline transceiver communication code (Manas)

Finish baseline user interface menu (Ben)

Range testing with wire antennas (All)

March 18th - March 25th Finalize 3D prints (Max & Ben)

Prototype user interface menu, controlling with Arduino Uno (Ben)

Revisions to PCB (Max)

Revisions to User interface software (Ben)
PCB Order (All)
March 25st - April 1st Revisions to PCB (Max)

Revisions to User Interface software (Ben)

PCB Order (All)

Range testing with 1st ordered antennas (All)

April st - April 8th Revisions to 3D design (Max)
PCB Order (All)

Finalize 3D prints (Ben)

Order new antennas (if necessary) (All)

17

April 8th - April 15th Range testing with new antennas (if necessary) (All)

Fix existing bugs (All)

April 15th - April 21st Finalize Assembly (All)

Fix existing bugs (All)

April 22nd Final Demo (All)

5. Conclusion

5.1 Accomplishments

The project met all the high level requirements which were outlined before. We verified
that all our subsystems were working as expected individually, and when put together as a single
unit.

We ensured the functionality of the project in expected conditions of amateur rocket
launches, and close to complete functionality in less than ideal conditions.

The long range viability of our project and accuracy of the data recorded and displayed
makes it immediately viable for amateur rocket tracking. The cost of about $250, including
shipping for parts and profit markup, makes it a much more affordable option compared to other
similar devices in the market.

This project has several complexities, and we ran into multiple issues while building it.
This required our group to learn and deal with challenges in an efficient manner, which would be
applicable in the industry. Besides, learning about RF communication (being a new topic for
most project members), understanding the vitality of economically using memory on chips,
learning new ways of debugging the physical board etc. are all highlights of what we managed to
accomplish as learning milestones.

5.2 Uncertainties

The outdoor nature of the project brings uncertainties around its performance in
inclement weather conditions. The GPS sensors we currently use work best in ideal weather
conditions, and don't work as well in cloudy/ rainy conditions. We would have preferred using
better GPS sensors that would be more resistant to poor performance in less than ideal weather.

The difficulties in uploading code onto the actual MCU chip is a factor to potentially look
into in more depth. During debugging, we noticed that the internal clock of the chip was not
running, which was causing the failure of programming the chip. We are unsure as to why this
occurred. We also could look into alternative methods of programming in order to work around
this problem.

18

The screen chipping required us to change our high level requirements, and required a
change in UI libraries used to code the functionality of printing to the screen. We are unsure of
the cause of the chipping, and needed to simply replace it given the timing of our demo.

5.3 Ethical considerations

This group was careful in considering the ethical and unethical applications of our
project. The one main item we wished to address was the misuse of our tracker system for
personal espionage and similar unconsented tracking of objects or people. IEEE’s Code of Ethics
Section 1.1 states we are responsible for the following. “To strive to comply with ethical design
and sustainable development practices, to protect the privacy of others, and to disclose promptly
factors that might endanger the public or the environment” [9]. We have some design limitations
and intended features that prevent such misuse. The tracker requires line of sight or low levels of
obstruction between the target and user alongside outside use. Therefore use in dense areas or
indoors renders the tracking inactive. Furthermore, the 433-434.8 MHz operating frequencies, as
discussed earlier, need a FCC license number to be included in data transmission. This requires a
malicious user to provide their license or use an illicit number, making them easy to ID by
authorities.

5.4 Future work

Upgrading to a more powerful microprocessor with better storage capabilities would be
the first step to improving our project. It would add the capability of adding more features and
subsystems (magnetometers, accelerometers etc.) to our current project, and enhance our
project’s serviceability to the user.

Switching our current GPS sensors to one of higher quality would make our project’s
performance in inclement weather a lot stronger. While amateur rocket launches wouldn’t take
place in non-ideal weather conditions, it doesn’t rule out the possibility of them occurring during
tracking, and it would be helpful if our project could maintain its functionality during these
conditions.

Improving the ergonomics of our tracker in order to make it more comfortable for the
user to hold it for long periods of time would be another priority to incorporate. This would also
include switching the casing from wood to a more durable material.

Incorporating physical antennas in our current design instead of the currently used wired

antennas would be an excellent way to improve the quality and range of communication between
the tracker and the beacon.

19

Sources

[1] “Illinois Space society Spaceshot Launch,” YouTube,
https://www.youtube.com/watch?v=8wJdRGztPJ4&t=61s (accessed May 1, 2024).

[2] Mikalhart, “Mikalhart/tinygpsplus: A new, customizable Arduino NMEA Parsing
Library,” GitHub, https://github.com/mikalhart/TinyGPSPlus (accessed May 1, 2024).

[3] Sparkfun, “SparkFun_Ublox_ Arduino Library/src/sparkfun ublox arduino library.cpp
at master - Sparkfun/SparkFun Ublox Arduino_ Library,” GitHub,
https://github.com/sparkfun/SparkFun Ublox Arduino Library/blob/master/src/SparkFun
_Ublox_Arduino_Library.cpp (accessed May 1, 2024).

[4] M. #167436, Greggler, M. #873985, and M. #985133, “SparkFun GPS breakout - chip
antenna, Sam-M8Q (Qwiic),” GPS-15210 - SparkFun Electronics,
https://www.sparkfun.com/products/15210?gad source=1&gclid=Cj0KCQjwOMexBhD3A
RISAEI3WHIYFJ1yeStECtM2Z-IMW8Q5sZYL2penmC-ZT9jH7FYt2s6a02gbxPEaAkd9
EALw_wcB (accessed May 1, 2024).

[5] Hoperf, https://www.hoperf.com/uploads/RFM96W-V2.0 1695351477.pdf (accessed
May 1, 2024).

[6] Sandeepmistry, “Arduino-Lora/SRC at master - Sandeepmistry/Arduino-Lora,” GitHub,
https://github.com/sandeepmistry/arduino-LoRa/tree/master/src (accessed May 1, 2024).

[7] “Lithium-ion Battery DATA SHEET Battery Model : LIR18650 2600mAh.” Available:
https://www.ineltro.ch/media/downloads/SA Altem/45/45958/36e¢3¢7£3-2049-4adb-a2a7-7
9¢654d92915.pdf

[8] “LM3671/-Q1 2-MHz, 600-mA Step-Down DC-DC Converter Datasheet.”
https://cdn-shop.adafruit.com/product-files/2745/P2745 Datasheet.pdf (accessed Feb. 20,
2024).

[9] IEEE, “IEEE Code of Ethics,” ieee.org, Jun. 2020.
https://www.ieee.org/about/corporate/governance/p7-8.html (accessed: Feb. 22, 2024)

20

https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf

