
‭Handheld Rocket Tracker‬

‭By‬

‭Benjamin Olaivar‬

‭Maxwell Kramer‬

‭Manas Tiwari‬

‭Final Report for ECE 445, Senior Design, Spring 2024‬

‭TA: Sanjana Pingali‬

‭1 May 2024‬

‭Project No. 16‬

‭Abstract‬
‭The Handheld Rocket Tracker seeks to make a more affordable and convenient method of‬

‭recovering a rocket after an amateur rocket launch. In this two-part system, a beacon is placed‬
‭inside the rocket, which transmits its gps position. A handheld tracker receives that signal, and‬
‭guides the user to the beacon, acting as a compass, however instead of pointing north, it points to‬
‭the beacon. Unfortunately the handheld device was not successfully completed on a PCB, which‬
‭led to ergonomic issues, however the core functionality of the device was successful.‬

‭2‬

‭Contents‬

‭1. Introduction ……………………………………………………………………. 4‬
‭1.1 High Level Requirements ……………………………………………… 4‬

‭2 Design …………………………………………………………………………... 5‬
‭2.1 MCU Subsystem ……………………………………………………….. 8‬

‭2.1.1 Beacon MCU ………………………………………………….. 8‬
‭2.1.2 Tracker MCU …………………………………………………. 8‬
‭2.1.3 Chip Selected and Challenges Faced …………………………. 9‬

‭2.2 Sensor Subsystem ……………………………………………………… 9‬
‭2.3 Communication Subsystem …………………………………………... 10‬

‭2.3.1 Beacon Communication ……………………………………... 10‬
‭2.3.2 Tracker Communication ……………………………………... 11‬

‭2.4 Power Subsystem ……………………………………………………... 11‬
‭2.5 User Interface Subsystem …………………………………………….. 11‬

‭2.5.1 Data Display ………………..………………………………... 12‬
‭2.5.2 Push Buttons ………………..……………………………….. 13‬

‭3. Design Verification …………………………………………………………… 14‬
‭3.1 MCU Verification …………………………………………………….. 14‬
‭3.2 Sensor Verification …………………………………………………… 14‬
‭3.3 Communication Verification …………………………………………. 14‬

‭3.3.1 Beacon TX to Tracker RX …………………………………... 14‬
‭3.3.2 Tracker TX to Beacon RX …………………………………... 14‬

‭3.4 Power Verification ……………………………………………………. 15‬
‭3.5 User Interface Verification …………………………………………… 15‬

‭4. Costs ………………………………………………………………………….. 16‬
‭4.1 Parts …………………………………………………………………... 16‬
‭4.2 Labor …………………………………………………………………..17‬
‭4.3 Schedule ……………………………………………………………… 17‬

‭5. Conclusion …………………………………………………………………… 18‬
‭5.1 Accomplishments …………………………………………………….. 18‬
‭5.2 Uncertainties ………………………………………………………….. 18‬
‭5.3 Ethical considerations ………………………………………………… 19‬
‭5.4 Future work …………………………………………………………... 19‬

‭References ………………………………………………………………………. 20‬

‭3‬

‭1. Introduction‬
‭The Illinois Space Society is an amateur rocketry team here on campus, which launches a‬

‭rocket 1-2 times a semester. Arguably the most important part of these launches is the recovery‬
‭of the rocket. The team has committed considerable time and money into this project, and wants‬
‭to retrieve their investment. Launches can reach altitudes of 60,000, where the rocket will deploy‬
‭a parachute and drift back to the ground. It’s nearly impossible to track a rocket with eyesight at‬
‭this altitude (see Figure 1 for the rocket POV). Commercially available trackers exist, however‬
‭they’re typically clunky, expensive and unintuitive, making it inconvenient to use.‬

‭To solve this issue, we have designed a Handheld Rocket Tracker, which consists of 2‬
‭parts: First is the beacon module, which is placed inside the rocket and transmits its GPS location‬
‭at all times. Second is the handheld tracker, which receives this transmission, and guides the user‬
‭to the beacon. Our solution attempts to make a more affordable and intuitive method of tracking‬
‭amateur rockets.‬

‭Figure 1: Rocket POV at altitude of ~10,000ft. Source: Illinois Space Society 2021 October Launch [1]‬

‭1.1 High Level Requirements‬
‭1.‬ ‭Successfully transmit positional and state data from the beacon to the handheld tracker,‬

‭and handheld tracker should successfully transmit commands to the handheld beacon. See‬
‭outlined in the “Packet Breakdown” under Software Design.‬

‭2.‬ ‭Have the capability for the user to switch the frequency of both the beacon and the‬
‭handheld tracker via user input on the handheld tracker device.‬

‭3.‬ ‭Accurately show the distance from the beacon within 5 meters, and point the user in the‬
‭correct direction of the beacon within 5 degrees. This information should be shown via‬
‭the screen in the User Interface, and behave similar to a compass, however pointing‬
‭towards the beacon instead of pointing North.‬

‭4‬

‭2 Design‬
‭The high-level design and subsystems for the beacon and handheld tracker are shown in‬

‭Figure 2, and their physical concepts can be seen in Figure 5. The beacon, seen in Figure 4, has 4‬
‭primary subsystems: mcu, sensor, communication, and power. The mcu subsystem is responsible‬
‭for handling communication between subsystems, and making any necessary calculations. The‬
‭sensor subsystem, consisting of a gps module, is responsible for collecting positional data for its‬
‭respective device. The communication subsystem handles communication between the beacon‬
‭and the tracker. This communication is done using the LoRa communication protocol within the‬
‭433MHz band. Finally, the power subsystem takes a variable voltage input of 3.7 to 4.2V, and‬
‭steps it down to 3.3V, which powers the entire device.‬

‭Note the handheld system, seen in Figure 5 is identical to the beacon, however with the‬
‭addition of the user interface subsystem. The user interface consists of buttons and a screen,‬
‭which take inputs from the user to navigate the menu, and guide the user to the beacon.‬

‭Figure 2: Subsystem Block Diagram‬

‭5‬

‭Figure 4: Beacon Concept Design‬

‭Figure 5: Handheld Tracker Concept Design‬

‭6‬

‭Figure 6: General Overview Diagram‬

‭Figure 7: Final Demo Design‬

‭7‬

‭2.1 MCU Subsystem‬
‭The MCU subsystem is responsible for managing communication between the various‬

‭subsystems, as well as making relevant calculations. While the beacon and handheld tracker are‬
‭very similar, the MCU on each has slightly different responsibilities.‬

‭2.1.1 Beacon MCU‬
‭On the beacon, the MCU is responsible for receiving positional data from the sensor‬

‭subsystem in the form of Longitude and Latitude via I2C, as well as receiving commands from‬
‭the handheld tracker. Upon landing, the parachute, which is still deployed, may get caught in the‬
‭wind and drag the rocket. To account for this, the beacon updates its gps coordinates every 3‬
‭seconds, and transmits the new data to the handheld tracker via the Communication Subsystem.‬
‭Additionally, the user may need to change the transmission frequency of the tracker. This isn’t‬
‭uncommon, considering the narrow band that LoRa operates in, and the high volume of teams at‬
‭rocket launches, which may be using the same frequency to track their own rockets. The MCU‬
‭listens for a “Change Frequency” command, and changes frequencies according to user input.‬
‭Further explanation of frequency changes is detailed in the Communication Subsystem‬
‭description.‬

‭2.1.2 Tracker MCU‬
‭The MCU on the handheld tracker has many of the same responsibilities, however with a‬

‭few notable differences. The handheld device has its own gps, which updates its position as the‬
‭user walks around. It compares its own GPS coordinates with the coordinates received from the‬
‭beacon, and calculates the distance and angle between the two devices. Details of how this‬
‭information is displayed are detailed in the User Interface Subsystem description, however the‬
‭basic equation to calculate the angle between the two points is seen below.‬

θ = ‭𝑎𝑟𝑐𝑡𝑎𝑛‬(∆‭𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒‬| |
∆‭𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒‬| |)

‭To ensure an accuracy of 5 meters, the TinyGPSPlus library was chosen to calculate the‬
‭distance between the two devices, as seen in Figure 8 below. It was chosen not to use simple trig‬
‭for this variable, as it could get increasingly less precise as the distance between the beacon and‬
‭the tracker grew, hence the use of an external library.‬

‭/* static */‬
‭double‬‭TinyGPSPlus‬‭::‬‭distanceBetween‬‭(‬‭double‬‭lat1‬‭,‬‭double‬‭long1‬‭,‬‭double‬‭lat2‬‭,‬‭double‬‭long2‬‭){‬
‭// returns distance in meters between two positions, both specified‬
‭// as signed decimal-degrees latitude and longitude. Uses great-circle‬
‭// distance computation for hypothetical sphere of radius 6372795 meters.‬
‭// Because Earth is no exact sphere, rounding errors may be up to 0.5%.‬
‭// Courtesy of Maarten Lamers‬

‭double‬‭delta‬‭=‬‭radians‬‭(‬‭long1‬‭-‬‭long2‬‭);‬
‭double‬‭sdlong‬‭=‬‭sin‬‭(‬‭delta‬‭);‬
‭double‬‭cdlong‬‭=‬‭cos‬‭(‬‭delta‬‭);‬
‭lat1‬‭=‬‭radians‬‭(‬‭lat1‬‭);‬

‭8‬

‭lat2‬‭=‬‭radians‬‭(‬‭lat2‬‭);‬
‭double‬‭slat1‬‭=‬‭sin‬‭(‬‭lat1‬‭);‬
‭double‬‭clat1‬‭=‬‭cos‬‭(‬‭lat1‬‭);‬
‭double‬‭slat2‬‭=‬‭sin‬‭(‬‭lat2‬‭);‬
‭double‬‭clat2‬‭=‬‭cos‬‭(‬‭lat2‬‭);‬
‭delta‬‭=‬‭(‬‭clat1‬‭*‬‭slat2‬‭)‬‭-‬‭(‬‭slat1‬‭*‬‭clat2‬‭*‬‭cdlong‬‭);‬
‭delta‬‭=‬‭sq‬‭(‬‭delta‬‭);‬
‭delta‬‭+=‬‭sq‬‭(‬‭clat2‬‭*‬‭sdlong‬‭);‬
‭delta‬‭=‬‭sqrt‬‭(‬‭delta‬‭);‬
‭double‬‭denom‬‭=‬‭(‬‭slat1‬‭*‬‭slat2‬‭)‬‭+‬‭(‬‭clat1‬‭*‬‭clat2‬‭*‬‭cdlong‬‭);‬
‭delta‬‭=‬‭atan2‬‭(‬‭delta‬‭,‬‭denom‬‭);‬
‭return‬‭delta‬‭*‬‭6372795‬‭;‬

‭}‬

‭Figure 8: TinyGPSPlus Distance between two coordinates function [2]‬

‭2.1.3 Chip Selected and Challenges Faced‬
‭To accomplish this, we chose to use the Atmega328p, which is the same chip as the‬

‭arduino uno. We chose this chip because of its simplicity and ease of use, however this ended up‬
‭coming back to hurt us. This chip only has 2KB of RAM, which is incredibly restrictive,‬
‭especially considering the fact that our screen requires a minimum of 1KB to operate. This small‬
‭memory size became even more apparent as we incorporated our GPS module, which was made‬
‭by SparkFun. The SparkFun gps library [3] was designed to be a “cover all” for all of their GPS‬
‭devices. This means it wasn’t really meant to be efficient, it was just meant to get the job done.‬
‭This was a problem for us because we were running out of memory. The initial SparkFun library‬
‭took up 76% of our total RAM. To solve this problem, we rewrote the GPS library, removing any‬
‭unused global variables and functions, and deleting debug prints. By doing this, we got the GPS‬
‭down to only 42% of our memory, which allowed us to use both the GPS and the display at the‬
‭same time.‬

‭2.2 Sensor Subsystem‬
‭The Sensor subsystem is responsible for gathering positional data from the gps module‬

‭and sending it to the MCU via I2C. Conveniently, we have found a sensor that has everything we‬
‭need built into 1 unit: the SAM-M8Q. The SAM-M8Q has a builtin GPS module and antenna for‬
‭communicating with local satellites, so no external antenna was needed. The SAM-M8Q‬
‭breakout can be seen in Figure 9.‬

‭9‬

‭Figure 9: SAM-M8Q breakout board with built-in ceramic antenna [4]‬

‭2.3 Communication Subsystem‬

‭The communication subsystem is the system responsible for handling communication‬
‭between the beacon and the tracker. Without this two-way communication we would not be able‬
‭to track the rocket itself as we would lack comparable GPS data. This subsystem consists of two‬
‭identical parts. Each is a LoRa RFM96 radio, one located on each of the beacon and tracker. The‬
‭beacon will generally give the tracker its GPS location while the tracker will, on user request,‬
‭change both itself and the beacon’s operating frequency. The radios can operate between 433 and‬
‭434.8 MHz and can operate well between 0.5 to 5 miles [5]. The radios interact with the MCU‬
‭using SPI. It should be noted that all data being sent needs a valid FCC license attached due to‬
‭the operating frequencies being non-general purpose wavelengths.‬

‭2.3.1 Beacon Communication‬

‭The beacon’s LoRa module has one transceiver action and one receiver action to perform.‬

‭For transceiving, the beacon will collect GPS data and package it within the Sensor and‬
‭MCU subsystems. After the data is ready for transmission the LoRa code library will be used.‬
‭Within it are three functions that package data for transmission. These are the beginPacket(),‬
‭write(), and endPacket() functions which collectively in sequence create and send out a packet of‬
‭data [6]. Once the data is packaged it will be transmitted on the current frequency set for the‬
‭beacon. This occurs once every three seconds in order to not overload the tracker with incoming‬
‭data.‬

‭For receiving, every cycle of the main code a parsePacket() is called from the LoRa‬
‭library. This parses the data into a form that can be manipulated and returns the bytes it received,‬
‭or 0 if no data was found. The beacon will specifically only ever receive a packet containing the‬
‭value of a new requested frequency from the user via the tracker. This frequency is extracted and‬
‭checked for its value to be in the mentioned valid range. If yes then we stop accepting new‬
‭frequencies for 5 seconds. This reason will be discussed in the next section for the tracker‬
‭portion, Once this is validated we set the internal frequency and begin transmitting GPS data‬
‭again.‬

‭10‬

‭2.3.2 Tracker Communication‬

‭The tracker’s LoRa module also has one transceiver purpose and one receiver purpose.‬

‭For transceiving, the tracker will only do this for when a new frequency is requested by‬
‭the user. When this happens we transmit the new requested frequency once every second for 5‬
‭seconds. This is because we want to make sure that the beacon doesn’t miss the singular request‬
‭and so we send redundant requests. This is why, as mentioned above, we halt accepting new‬
‭frequencies for 5 seconds after a valid is received. Testing showed that many requests would get‬
‭jumbled and cause the beacon to switch to an unwanted frequency. The data is packaged the‬
‭same way as mentioned above within the beacon.‬

‭For receiving, the tracker will use the same parsePacket() LoRa function discussed‬
‭before. On a valid packet being found, its contents are read into a dedicated struct locally and‬
‭saved in other variables for the MCU’s use.‬

‭2.4 Power Subsystem‬

‭The power subsystem is responsible for intaking the voltage available from a power‬
‭source and converting it to a usable voltage for every other subsystem. This system is present in‬
‭identical forms in both the beacon and the tracker. The system has two main parts. The original‬
‭design consisted of 18650 LiPo batteries and a LM3671 3.3V buck converter.‬

‭The LiPo batteries would, based on its charge, provide 4.2-3.2V to the input of the buck‬
‭converter [7]. The batteries would’ve been removable and would allow end users to charge them‬
‭themselves and swap when needed. The batteries were not, however, usable in the final form of‬
‭the project. Instead they were replaced by the 5V output line of an arduino uno dev board, which‬
‭received its power separately. This will be discussed in depth within the power subsystem‬
‭verification section later on in this report.‬

‭The LM3671 buck converter was responsible for converting input voltage to 3.3V output‬
‭for the rest of the systems in both the beacon and tracker. This was chosen over a linear regulator‬
‭for concerns about overheating during rocket launch. This specific one was chosen for its ability‬
‭to handle up to 600 mA of current draw [8]. This draw is well above expected draw from all the‬
‭other systems and therefore is ideal for our purposes.‬

‭2.5 User Interface Subsystem‬

‭This subsystem facilitates user interaction with our project. It allows the user to access‬
‭relevant data pertaining to tracking the beacon (i.e. the distance and direction), and takes in user‬
‭inputs where and when required. It consists of a display to show data relevant to the user, and‬
‭push buttons to enable navigation and provide inputs.‬

‭The code to display text onto the screen is written in C++, and uses helper functions from‬
‭the Adafruit_GFX.h and Adafruit_SSD1306.h libraries to do so. In addition, the push buttons are‬

‭11‬

‭polled continuously in a loop to detect user action. The logic of printing menu and sub-menu‬
‭options along with the logic to navigate through them are also coded in C++.‬

‭2.5.1 Data Display‬

‭The screen used for our project is a 400 x 240 pixels Adafruit Sharp Memory Breakout‬
‭display. It defaults to displaying the current menu, and switches to displaying other sub menus as‬
‭per the user’s directions.‬

‭The distance and direction to the beacon (computed by the MCU) is displayed within the‬
‭Compass Menu. The distance is displayed as text, while the direction of the beacon is shown in a‬
‭compass-like format, where the needle would be pointing towards the beacon. See Figure 10 for‬
‭more information.‬

‭Figure 10: Compass Menu displaying Distance and Direction to the Beacon‬

‭The display screen is crucial in most of our verification procedures for the rest of our‬
‭subsystems. Hence, it was of utmost importance that it worked correctly during our project’s‬
‭progress.‬

‭During our project, we needed to resolve multiple issues regarding the display. The first‬
‭issue arose when the screen we had initially chosen took up more than 50% of our chip’s‬
‭memory. Our solution at the time was to switch to one with a smaller size and resolution.‬
‭However, we later realized that the new screen chosen would not be physically capable of‬
‭displaying the direction to the beacon with a precision of 2 degrees. This led us to making a‬

‭12‬

‭change in our high level requirements to go from displaying the direction with a precision of 2‬
‭degrees to 5 degrees instead.‬

‭During final rounds of testing, we noticed that the screen was chipped. This caused the‬
‭screen to not display anything at all, and forced us once again to make a switch to the 400x240‬
‭Adafruit display. This switch required us to rewrite major portions of the UI code, due to the fact‬
‭that this screen used a different set of drivers (Adafruit_SharpMem.h instead of‬
‭Adafruit_SSD1306.h). We ordered the same screen, but it did not reach in time before the final‬
‭demo.‬

‭2.5.2 Push Buttons‬

‭The last component of the UI subsystem deals with allowing the user to provide inputs in‬
‭order to navigate to the desired menu to view its relevant information. This was implemented‬
‭with 4 buttons corresponding to Up, Down, Select (Enter) and Main Menu selection (see Figure‬
‭11). Menu navigation is achieved using these buttons, with UI code running in parallel to ensure‬
‭the correct information is being displayed as requested by the received inputs.‬

‭The “up” and “down” buttons are mostly used to change the highlighted option. This‬
‭behavior differs in the Frequency Change menu, where they are used to increment/ decrement the‬
‭displayed frequency by 0.1 MHz. The “enter” button signifies confirmation to enter the‬
‭highlighted menu, or to confirm an action (such as setting the frequency). The “main menu”‬
‭button is used to quickly navigate back to the default main menu display.‬

‭Figure 11: Push Buttons and their functionality‬

‭13‬

‭3. Design Verification‬

‭3.1 MCU Verification‬
‭The verification process for the MCU was primarily focused on getting a response from the chip‬
‭on the PCB. During our testing, we unfortunately couldn’t get the MCU on the PCB to respond‬
‭to our programmer. We first soldered the MCU and external 16 MHz clock onto the PCB, and‬
‭attempted to upload to the board using Arduino as ISP. Unfortunately during this process, we‬
‭never got a response from our chip. Testing showed that the external 16 MHz clock was not‬
‭oscillating. After discovering this, we instead used the internal 8MHz clock. Again, we got no‬
‭response from the MCU. Unfortunately we still got no response from the chip. In the end we‬
‭decided to omit the PCB in order to focus on fulfilling the high level requirements of our project.‬

‭3.2 Sensor Verification‬

‭To ensure accurate distance calculations between the beacon and tracker, we required this GPS to‬
‭be accurate within 5 meters. To validate this requirement, we compared the coordinates received‬
‭by the GPS to some known locations on campus. We used the coordinates of the spire on Eng‬
‭quad as a baseline. We powered on the GPS, and compared the received coordinates of the gps to‬
‭the spire, and made sure our location was accurate.‬

‭3.3 Communication Verification‬
‭The communication subsystem has two main areas of verification. The first is making‬

‭sure beacon transceiving and tracker receiving are working together. The second is making sure‬
‭beacon receiving and tracker transceiving are working together.‬

‭3.3.1 Beacon TX to Tracker RX‬
‭To verify a beacon to tracker transmission of the beacon’s GPS data, we have three steps.‬

‭First, we have beacon print its GPS data it has and send it out as a packet every three seconds.‬
‭This print out occurs on a connected serial port from the arduino uno the code is housed in.‬
‭Second, we print out any received packets and their contents on a second serial port for the‬
‭tracker when it sees any incoming data. This is to verify data is consistent between the devices.‬
‭Finally, since we had UI working at the time we began RXTX testing, we had the MCU use the‬
‭data as intended and check if the UI gives proper distance and direction. If yes, then the beacon‬
‭to tracker data transmission is working.‬

‭3.3.2 Tracker TX to Beacon RX‬
‭To verify a tracker to beacon transmission, we do the same testing plan as described in‬

‭3.3.1 above with some small changes. We do add one additional step at the end regarding‬
‭matching the frequencies. After the beacon receives the new frequency and begins operating at it‬
‭we need to check that communication is still active, mainly to see if both devices got the same‬
‭new frequency. Therefore we hold the user in the current menu and wait to see if a packet of data‬

‭14‬

‭is received by the tracker. If it does then they both are at the new frequency. Otherwise, different‬
‭frequencies have been applied and we therefore have failed.‬

‭3.4 Power Verification‬
‭Power verification was short but slightly complicated by the need to forgo the PCB. With‬

‭the project running on a breadboard system with the arduino uno dev board, we could not rely on‬
‭battery power. The dev board needs 12V-5V input, lower than the 4.2V maximum of the LiPo‬
‭batteries. To work around this, the arduino was powered via usb connector to a laptop that was‬
‭needed for serial port printout for verification. The 5V output pin of the dev board was then fed‬
‭into the input of the buck convertor. This convertor then supplied its intended 3.3V output to the‬
‭rest of the subsystems and was successful in powering them without any issues.‬

‭We also debugged the buck’s themselves. The first one we received was determined to‬
‭have an internal error as power supply and voltmeter testing revealed no output voltage.‬
‭Replacements ordered did work as intended on the first try.‬

‭3.5 User Interface Verification‬
‭Testing of the display screen was largely a straightforward process. We first needed to‬

‭ensure that the screen was working. This was done by powering the screen and displaying some‬
‭text on it. Once its functionality was confirmed, we tested it further by displaying the distance‬
‭and directional data, and other details as and when required.‬

‭Testing of the push button was done by manually pressing the buttons, and displaying‬
‭different text for each corresponding push button. Each button was pressed independently several‬
‭times to ensure their expected behavior.‬

‭Menu navigation was tested by providing inputs, and visually verifying that the menu‬
‭navigation and selection were working as expected.‬

‭15‬

‭4. Costs‬

‭4.1 Parts‬

‭Table 1: Parts Costs‬

‭Part‬ ‭Manufacturer‬ ‭Individual Cost‬
‭($)‬

‭Quantity‬ ‭Total Cost ($)‬

‭LM3671 3.3V Buck‬
‭Converter‬

‭Adafruit‬ ‭$4.95‬ ‭2‬ ‭$9.90‬

‭Adafruit RFM96W‬
‭LoRa Radio Transceiver‬

‭Adafruit‬ ‭$19.95‬ ‭2‬ ‭$39.90‬

‭Monochrome 0.96"‬
‭128x64 OLED Graphic‬

‭Display‬
‭Adafruit‬ ‭$17.50‬ ‭1‬ ‭$17.50‬

‭ABLS-16.000MHZ-B2-‬
‭T‬

‭CRYSTAL‬
‭16.0000MHZ 18PF‬

‭SMD‬

‭Abracon LLC‬ ‭$0.45‬ ‭2‬ ‭$0.90‬

‭CONREVSMA002-G‬

‭CONN RP-SMA RCPT‬
‭R/A 50 OHM PCB‬

‭TE Connectivity Linx‬
‭$3.74‬ ‭2‬ ‭$7.48‬

‭Sam M8Q GPS‬ ‭Sparkfun‬
‭$42.95‬ ‭2‬ ‭$85.90‬

‭Switch Tactile SPST‬ ‭Shruter INC‬
‭$0.26‬ ‭20‬ ‭$5.20‬

‭RF ANT 433MHZ‬
‭WHIP TILT‬

‭RF Solution‬
‭$5.69‬ ‭2‬ ‭$11.38‬

‭ATMega 328p‬ ‭Microchip Technology‬
‭$2.74‬ ‭2‬ ‭$5.48‬

‭10K OHM Resistor‬ ‭Stackpole Electronics‬
‭$0.10‬ ‭10‬ ‭$1.00‬

‭1K OHM Resistor‬ ‭Stackpole Electronics‬
‭$0.10‬ ‭10‬ ‭$1.00‬

‭22pF Capacitor‬ ‭Murata Electronics‬
‭$0.10‬ ‭10‬ ‭$0.29 (Bulk order)‬

‭0.1uF Capacitor‬ ‭Murata Electronics‬
‭$0.10‬ ‭10‬ ‭$0.19 (Bulk order)‬

‭4.7uF Capacitor‬ ‭Murata Electronics‬
‭$0.12‬ ‭5‬ ‭$0.60‬

‭10uF Capacitor‬ ‭Murata Electronics‬
‭$0.10‬ ‭10‬ ‭$0.19 (Bulk order)‬

‭Total‬ ‭~‬ ‭~‬ ‭~‬ ‭$186.91‬

‭16‬

‭4.2 Labor‬
‭With an hourly rate of $50 per hour, as used and approved of in this project’s design‬

‭document, and assuming 15 hours per week over 15 weeks, we can get the following labor cost.‬

‭$50/hr * 15 hr/week * 15 weeks * 3 members * 2.5 = $84,375‬

‭4.3 Schedule‬
‭Table 2: Initial Schedule‬

‭17‬

‭Week‬ ‭Task‬

‭February 26th - March 4th‬ ‭Order parts for prototyping (Max)‬

‭Start prototyping with existing components (All)‬

‭Research Transceiver communication (Manas)‬

‭Start PCB design (Max & Ben)‬

‭March 4th - March 11th‬ ‭Begin 3D print designing (Ben)‬

‭Successfully establish transceiver communication (Manas & Ben)‬

‭Finish 1st iteration PCB design (Max & Ben)‬

‭PCB Order (All)‬

‭March 11th - March 18th‬ ‭Print first versions of 3D printed case prototypes (Max & Ben)‬

‭Finish the baseline transceiver communication code (Manas)‬

‭Finish baseline user interface menu (Ben)‬

‭Range testing with wire antennas (All)‬

‭March 18th - March 25th‬ ‭Finalize 3D prints (Max & Ben)‬

‭Prototype user interface menu, controlling with Arduino Uno (Ben)‬

‭Revisions to PCB (Max)‬

‭Revisions to User interface software (Ben)‬

‭PCB Order (All)‬

‭March 25st - April 1st‬ ‭Revisions to PCB (Max)‬

‭Revisions to User Interface software (Ben)‬

‭PCB Order (All)‬

‭Range testing with 1st ordered antennas (All)‬

‭April 1st - April 8th‬ ‭Revisions to 3D design (Max)‬

‭PCB Order (All)‬

‭Finalize 3D prints (Ben)‬

‭Order new antennas (if necessary) (All)‬

‭5. Conclusion‬

‭5.1 Accomplishments‬

‭The project met all the high level requirements which were outlined before. We verified‬
‭that all our subsystems were working as expected individually, and when put together as a single‬
‭unit.‬

‭We ensured the functionality of the project in expected conditions of amateur rocket‬
‭launches, and close to complete functionality in less than ideal conditions.‬

‭The long range viability of our project and accuracy of the data recorded and displayed‬
‭makes it immediately viable for amateur rocket tracking. The cost of about $250, including‬
‭shipping for parts and profit markup, makes it a much more affordable option compared to other‬
‭similar devices in the market.‬

‭This project has several complexities, and we ran into multiple issues while building it.‬
‭This required our group to learn and deal with challenges in an efficient manner, which would be‬
‭applicable in the industry. Besides, learning about RF communication (being a new topic for‬
‭most project members), understanding the vitality of economically using memory on chips,‬
‭learning new ways of debugging the physical board etc. are all highlights of what we managed to‬
‭accomplish as learning milestones.‬

‭5.2 Uncertainties‬
‭The outdoor nature of the project brings uncertainties around its performance in‬

‭inclement weather conditions. The GPS sensors we currently use work best in ideal weather‬
‭conditions, and don't work as well in cloudy/ rainy conditions. We would have preferred using‬
‭better GPS sensors that would be more resistant to poor performance in less than ideal weather.‬

‭The difficulties in uploading code onto the actual MCU chip is a factor to potentially look‬
‭into in more depth. During debugging, we noticed that the internal clock of the chip was not‬
‭running, which was causing the failure of programming the chip. We are unsure as to why this‬
‭occurred. We also could look into alternative methods of programming in order to work around‬
‭this problem.‬

‭18‬

‭April 8th - April 15th‬ ‭Range testing with new antennas (if necessary) (All)‬

‭Fix existing bugs (All)‬

‭April 15th - April 21st‬ ‭Finalize Assembly (All)‬

‭Fix existing bugs (All)‬

‭April 22nd‬ ‭Final Demo (All)‬

‭The screen chipping required us to change our high level requirements, and required a‬
‭change in UI libraries used to code the functionality of printing to the screen. We are unsure of‬
‭the cause of the chipping, and needed to simply replace it given the timing of our demo.‬

‭5.3 Ethical considerations‬

‭This group was careful in considering the ethical‬‭and unethical applications of our‬
‭project. The one main item we wished to address was the misuse of our tracker system for‬
‭personal espionage and similar unconsented tracking of objects or people. IEEE’s Code of Ethics‬
‭Section 1.1 states we are responsible for the following. “‬‭To strive to comply with ethical design‬
‭and sustainable development practices, to protect the privacy of others, and to disclose promptly‬
‭factors that might endanger the public or the environment”‬‭[9]. We have some design limitations‬
‭and intended features that prevent such misuse. The tracker requires line of sight or low levels of‬
‭obstruction between the target and user alongside outside use. Therefore use in dense areas or‬
‭indoors renders the tracking inactive. Furthermore, the 433-434.8 MHz operating frequencies, as‬
‭discussed earlier, need a FCC license number to be included in data transmission. This requires a‬
‭malicious user to provide their license or use an illicit number, making them easy to ID by‬
‭authorities.‬

‭5.4 Future work‬
‭Upgrading to a more powerful microprocessor with better storage capabilities would be‬

‭the first step to improving our project. It would add the capability of adding more features and‬
‭subsystems (magnetometers, accelerometers etc.) to our current project, and enhance our‬
‭project’s serviceability to the user.‬

‭Switching our current GPS sensors to one of higher quality would make our project’s‬
‭performance in inclement weather a lot stronger. While amateur rocket launches wouldn’t take‬
‭place in non-ideal weather conditions, it doesn’t rule out the possibility of them occurring during‬
‭tracking, and it would be helpful if our project could maintain its functionality during these‬
‭conditions.‬

‭Improving the ergonomics of our tracker in order to make it more comfortable for the‬
‭user to hold it for long periods of time would be another priority to incorporate. This would also‬
‭include switching the casing from wood to a more durable material.‬

‭Incorporating physical antennas in our current design instead of the currently used wired‬
‭antennas would be an excellent way to improve the quality and range of communication between‬
‭the tracker and the beacon.‬

‭19‬

‭Sources‬
‭[1] “Illinois Space society Spaceshot Launch,” YouTube,‬
‭https://www.youtube.com/watch?v=8wJdRGztPJ4&t=61s (accessed May 1, 2024).‬

‭[2] Mikalhart, “Mikalhart/tinygpsplus: A new, customizable Arduino NMEA Parsing‬
‭Library,” GitHub, https://github.com/mikalhart/TinyGPSPlus (accessed May 1, 2024).‬

‭[3] Sparkfun, “SparkFun_Ublox_Arduino_Library/src/sparkfun_ublox_arduino_library.cpp‬
‭at master · Sparkfun/SparkFun_Ublox_Arduino_Library,” GitHub,‬
‭https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library/blob/master/src/SparkFun‬
‭_Ublox_Arduino_Library.cpp (accessed May 1, 2024).‬

‭[4] M. #167436, Greggler, M. #873985, and M. #985133, “SparkFun GPS breakout - chip‬
‭antenna, Sam-M8Q (Qwiic),” GPS-15210 - SparkFun Electronics,‬
‭https://www.sparkfun.com/products/15210?gad_source=1&gclid=Cj0KCQjw0MexBhD3A‬
‭RIsAEI3WHJYFJ1ye5tECrM2Z-IMW8Q5sZYL2penmC-ZT9jH7FYt2s6aO2gbxPEaAkd9‬
‭EALw_wcB (accessed May 1, 2024).‬

‭[5] Hoperf, https://www.hoperf.com/uploads/RFM96W-V2.0_1695351477.pdf (accessed‬
‭May 1, 2024).‬

‭[6] Sandeepmistry, “Arduino-Lora/SRC at master · Sandeepmistry/Arduino-Lora,” GitHub,‬
‭https://github.com/sandeepmistry/arduino-LoRa/tree/master/src (accessed May 1, 2024).‬

‭[7] “Lithium-ion Battery DATA SHEET Battery Model : LIR18650 2600mAh.” Available:‬
‭https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-7‬
‭9c654d92915.pdf‬

‭[8] “LM3671/-Q1 2-MHz, 600-mA Step-Down DC-DC Converter Datasheet.”‬
‭https://cdn-shop.adafruit.com/product-files/2745/P2745_Datasheet.pdf (accessed Feb. 20,‬
‭2024).‬

‭[9] IEEE, “IEEE Code of Ethics,”‬‭ieee.org‬‭, Jun. 2020.‬
‭https://www.ieee.org/about/corporate/governance/p7-8.html (accessed: Feb. 22, 2024)‬

‭20‬

https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf

