# Title Team Members TA Documents Sponsor
29 Solar Water Filtration and Vending System
Lixiang Dong
Mustika Wijaya
Rahul Raju
Bryce Smith design_review
Most rural areas don’t have a consistent source of water, forcing people to walk long distances to get it. One of our member’s non-profit organization (Solar Chapter) recently built a solar pumping system, which solves this problem. However, this water requires further treatment to be drinkable. To address this problem, we’ve decided to build a solar distillation system.

Solar panels will charge a lead acid battery (affordable), which will power the vending system. A charge controller will be required to obtain the desired output from a fluctuating input. Additional sun tracking system using photoresistor may be implemented to improve performance. We will then implement a water filtration system. Water will flow in through solar distillation to improve the water clarity and clean the water to high degree of purity. Then water will flow to another tank with purify layers of fibre membrane, active charcoal, and sand. For monitor our machine, Using an ultrasonic sensor, we will determine the amount of water within the storage and distillation tanks. This will be connected to sluice gates and the distillation setup, serving as a control system. The water quality will also be monitored using pH and Turbidity sensors, which will help evaluate the system’s performance. We will then implement a vending system, which disposes a fixed amount of water for money - this will also utilize sluice gates. As a reach goal, we will consider ways to transmit this sensor data to provide for remote monitoring, enabling maintenance.

In our conversations with course staff, we were informed that this project was sufficiently complex. In fact, this is a subset of our original plan to develop a full filtration, monitoring and vending system. We are willing to adjust our goals to achieve adequate complexity - for instance, including the data transmission as an expectation as opposed to a reach goal if required. As socially-conscious engineering students, we intend to put a version of our final product into active use in rural Indonesia and similar environments.

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project


Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.



Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.



1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts



Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos