Project

# Title Team Members TA Documents Sponsor
13 IR Tracking NERF Sentry Gun
Christian Ryan Alvaro
Emily Dixon
Lauren Klindworth
Channing Philbrick final_paper
presentation
proposal
video
video
This project aims to create a deployable NERF sentry gun. This project is unique in the sense of adding an ECE spin to a common toy blaster. While the idea of sentry guns has been done before, what sets this project apart from the others is two-fold. First, its tracking system relies on infrared, versus most other systems that rely on webcams and OpenCV. This leads into the second point, portability. Because of its lighter hardware requirement in tracking, specifically in not needing an entire computer, the system should be redeployable at will.

In terms of hardware, we plan on using a ATMega microcontroller as the brain of the project. For sensing, it'll use an IR receiver from a Wiimote and interface with the microcontroller whenever strong IR beacons are sensed. The microcontroller would command servo motors in a pan-tilt configuration to aim, all before spinning up the flywheel motors and dart pushing motor via transistors connected to the pins of the microcontroller. We'll need to design a control system in order to balance it's responsiveness with it's precision, since fast acquisition may result in overshoot and a missed target from its own momentum, while slower movements may result in missing a shot at the target.

LED Cube

Michael Lin, Raymond Yeh

LED Cube

Featured Project

LED technology is more advanced and much more efficient than traditional incandescent light bulbs and as such our team decided we wanted to build a device related to LEDs. An LED cube is inherently aesthetically pleasing and ours will be capable of displaying 3D animations and lighting patterns with much increased complexity compared to any 2D display of comparable resolution. Environmental interaction will also be able to control the various lighting effects on the cube. Although our plan is for a visually pleasing cube, our implementation can easily be adapted for more practical applications such as displaying 3D models.