# Title Team Members TA Documents Sponsor
17 Fast Low Cost Swarm Robots
Honorable Mention
Michael Bartmess
Paul Ernst
Peter Cork
Dongwei Shi design_document0.pdf
The project is to create a fleet of low-cost robots capable of moving quickly in a coordinated fashion. Each robot will be relatively small, smaller than a human fist, and the area of movement would be roughly the size of a table. Our goal would be to build 16 of them. Since the cost of each robot is multiplied by the size of the fleet, making a design that allows the robots to coordinate without using too many sensors is highly beneficial.
Currently, swarm robots either are too slow or are too expensive. A prime example would be the Zooids project from Stanford, where the robots each use a high-quality IR sensor to decode their coordinates beamed from an expensive 3000Hz projector. This both limits the granularity of the positioning system and increases cost.

Our method for coordinating the robots would be to use a 1080p webcam mounted overhead and use machine vision to identify the robots locations and orientation. The vision system would then send the current locations, orientations, and destination locations to the robot over WiFi. From there, the robots would utilize the information to move towards the destination location. The vision system will likely run off of a laptop and use a router to send the information over WiFi.

Each robot would be equipped with an ESP8285 SoC which integrates a microcontroller with a WiFi chip, an antenna, motor controllers, two stepper motors for precise movement, and a battery with charging circuitry. The shell of the robot and PCB would both be designed by us. The robot would also feature some variety of a vision target on the top to assist the camera in identifying the robot and its location.

Low Cost Myoelectric Prosthetic Hand

Michael Fatina, Jonathan Pan-Doh, Edward Wu

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.

Project Videos