Project

# Title Team Members TA Documents Sponsor
15 Driver Sleep Detection and Alarming System
Area Award: Computer Vision
Chenyang Xu
Xiangyu Chen
Yixiao Nie
design_document0.pdf
final_paper0.pdf
presentation0.ppt
proposal0.pdf
While driving alone on highway or over a long period of time, it's very easy for the driver to fall asleep and may cause accident. Therefore, we came up with an idea to develop a driver anti-sleep alarm system which could effectively solve the problem.
Our system will use a camera (Kinect) to track the eyes of driver, send information back to a microcontroller, and sound alarms when dangerous signals appear. Therefore our system will have 4 main parts: camera, microcontroller, power supply, and sound warning system.
In the following paragraphs weâ??ll further discuss the image processing and face recognition algorithms and hardware (power supply system and sound warning system).

Algorithms:
This project will use the Kinect camera, which has three modes: RGB mode, depth mode, and IR mode. The RGB mode is used for daytime detection, while the IR mode is used for night detection. The depth mode will not be used.
Basically, the emphasis of the algorithm is detecting the eye motion of the driver. When the driver fells sleepy, their lips will approach closer with each other. The camera should be able to detection this change and then make decision whether the driver is sleepy. During the daytime, the RGB mode of the camera works perfectly for detection. However, when it is at night, RGB mode may perform poor because of the trivial light. In this case we may use the IR mode to detect driverâ??s eyes. Another way to handle this is by using histogram equalization, an algorithm that expands color comparison. In addition, in order to run the algorithm, we may need to use an ARM board which has GPU that can handle image processing in a fast speed

Hardware: The hardware system is composed of three parts. First, we will try to use beagleboard-xm as the little computer to interact with Kinect and control the LEDs and sound system. We will install some Linux system on beagleboard and kinect SDK and implement our algorithms to do face recognition and eye lips closing detection.
The second part is the power supply unit for Beagle board, Kinect camera, and PCB board microprocessor. Since the Kinect camera is connected to Beagle board, it retrieves power directly from Beagle board. Next, the Beagle board is going to retrieve its power from the power supply unit we design, which is approximately 10 W (with camera) according to technical data provided by Beagleâ??s website. The power unit includes a voltage filter, a DC-DC converter and the corresponding microcontroller. The power unit has one USB receptor and one USB output port. The output is used to power up the camera and Beagle board. The receptor is used to receive power from a pre-purchased inverter that can connect to car power supply. The third part is the feedback alarming system including sounds and light. The light warning is made up by 5 regular red LED lights, which are powered by designed PCB. Also, they are able to adjust frequency depending on driversâ?? condition. The sound warning is implemented with a speaker or a buzzer. It is also powered by another DC-DC converter with different voltage on the PCB board. The car power supply can provide sufficient power above 90 W. The hardware PCB board receives control signal from Beagle, retrieves power from inverter and sends out power to Beagle and camera. Predicted board has a microcontroller for controlling DC-DC converter and communicating with alarming system.

Possible challenge includes efficiency of algorithms for face and eye lips detection during day time and night time. The signal communication and interaction between Beagleboard and camera, warning system will be another major obstacle. Moreover, the stabilization and filter of the voltage of power supply from car is also considered as an intricate experimental task.

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.