Project

# Title Team Members TA Documents Sponsor
3 Solar Drone (Quadrotor Helicopter UAV powered by sun)
Area Award: Controls
Jie Wang
Jinming Zhang
Yingkan Ni
design_document0.document
final_paper0.pdf
presentation0.ppt
proposal0.pdf
Unmanned Aerial Vehicle (UAV), or commonly known as drone, is a type of aircraft without a human pilot on board, as the name suggested, but controlled autonomously by computers and/or taking commands from remote stations. The UAVs are perfect candidates for tasks that are tedious or dangerous for human, for example, patrolling along boarder lines, wild fire control, aerial surveillance and etc.
The applications of UAV, as described above, generally require long flight time and reliable power supply. While the current UAV designs utilizing traditional battery or fuel cells struggles to meet such requirement, this project aims to provide a innovative solution to this problem by introducing the current popular photovoltaic system into the UAV power system design. Such design will combine the sustainability of solar energy with the reliability of battery. This project focuses on the electrical components of the design and aims to provide a platform for future development on solar powered UAVs.

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)