# Title Team Members TA Documents Sponsor
59 Dynamic Ferrofluid Lamp
Chen Huang
Chong Lu
Luke Wendt design_document0.pdf
Chen Huang chuan102
Chong Lu chonglu2

My partner and I would like to take on the challenge left over by group 32 of last semester in building a lava lamp with ferrofluid replacing wax and heaters.

Like group 32 of last semester, we would like to use a stronger permanent magnets controlled by a servo to manipulate the main up and down motion of the ferrofluid. Expanding upon their previous work, we would like to develop a way of controlling the distance the permanent magnets are pushed and pulled along the chamber to increase the degree of control the low power consuming permanent magnets have on the ferrofluid. We might scrap the idea of controlling these magnets with electromagnets and use servos instead for more precise manipulation.

Also, we would like to add an array of electromagnets that directly interact with the ferrofluid, giving us even more means of manipulating the display. And in the case of us using servos to manipulate all the permanent magnets, this array of electromagnets will provide us with the ability to produce much faster changes to the magnetic field. Due to possible power restrictions, these electromagnets can be relatively weaker and produce more subtle manipulations on the ferrofluid. Since the main motion of our ferrofluid lamp will be up and down, controlled by the permanent magnet on the top of the lamp, it will not be necessary for all electromagnets to be powered at the same time.

The basic construction of the lamp will be two concentric cylinder containers, with the outer compartment holding ferrofluid and the suspension fluid, and the inner container holding electromagnets and possibly permanent magnets. We would also like to experiment with the effects of electromagnets on the outer casing of the lamp. These electromagnets would have to be relatively weak due to physical space restrictions in the location they are placed. However, we would like to experiment with the degree of manipulation and possible display effects this configuration can provide.

The electromagnets will be arranged such that the magnetic field is perpendicular to the central cylinder axis and forms a grid of electromagnets on the surface of the center cylinder. We would like to experiment with arranging the electromagnets in a Halbach array to increase the magnetic field on one side of the array. We believe this may enable us to produce stronger magnetic fields using electromagnets with lower current draw.

The aim of the project is not to make high resolution display, but to create an artistic art piece that can manipulate ferrofluid in a relatively controlled to create a wide range of display patterns.

Idea Link:
Last Semester Group 32 Link:

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos