Project

# Title Team Members TA Documents Sponsor
59 Dynamic Ferrofluid Lamp
Chen Huang
Chong Lu
Luke Wendt design_document0.pdf
design_document0.pdf
final_paper0.pdf
other0.pdf
photo0.png
presentation0.pptx
proposal0.pdf
Teammates:
Chen Huang chuan102
Chong Lu chonglu2

My partner and I would like to take on the challenge left over by group 32 of last semester in building a lava lamp with ferrofluid replacing wax and heaters.

Like group 32 of last semester, we would like to use a stronger permanent magnets controlled by a servo to manipulate the main up and down motion of the ferrofluid. Expanding upon their previous work, we would like to develop a way of controlling the distance the permanent magnets are pushed and pulled along the chamber to increase the degree of control the low power consuming permanent magnets have on the ferrofluid. We might scrap the idea of controlling these magnets with electromagnets and use servos instead for more precise manipulation.

Also, we would like to add an array of electromagnets that directly interact with the ferrofluid, giving us even more means of manipulating the display. And in the case of us using servos to manipulate all the permanent magnets, this array of electromagnets will provide us with the ability to produce much faster changes to the magnetic field. Due to possible power restrictions, these electromagnets can be relatively weaker and produce more subtle manipulations on the ferrofluid. Since the main motion of our ferrofluid lamp will be up and down, controlled by the permanent magnet on the top of the lamp, it will not be necessary for all electromagnets to be powered at the same time.

The basic construction of the lamp will be two concentric cylinder containers, with the outer compartment holding ferrofluid and the suspension fluid, and the inner container holding electromagnets and possibly permanent magnets. We would also like to experiment with the effects of electromagnets on the outer casing of the lamp. These electromagnets would have to be relatively weak due to physical space restrictions in the location they are placed. However, we would like to experiment with the degree of manipulation and possible display effects this configuration can provide.

The electromagnets will be arranged such that the magnetic field is perpendicular to the central cylinder axis and forms a grid of electromagnets on the surface of the center cylinder. We would like to experiment with arranging the electromagnets in a Halbach array to increase the magnetic field on one side of the array. We believe this may enable us to produce stronger magnetic fields using electromagnets with lower current draw.

The aim of the project is not to make high resolution display, but to create an artistic art piece that can manipulate ferrofluid in a relatively controlled to create a wide range of display patterns.

Idea Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=15088
Last Semester Group 32 Link: https://courses.engr.illinois.edu/ece445/project.asp?id=1706

Prosthetic Control Board

Caleb Albers, Daniel Lee

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)

Board:

support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)

Sensor:

Addition of a temperature sensor to provide temperature feedback to the microcontroller.

Software:

change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.