# Title Team Members TA Documents Sponsor
56 Earthworm Robot
Area Award: Research
Kunakorn Puntawong
Zehua Li
Luke Wendt
Kunakorn Puntawong(puntawo2)
Zehua Li (zehuali2)


Biomimicry is the approach of seeking solution through emulating nature-inspired solution that has been time-tested over thousands of years. We are inspired by the ability in which earthworm can effortlessly crawl through dirt, sand and obstacles with it’s body structure and movement patterns controlled by their circular and longitudinal muscles. [1] Therefore, our team proposes a general-purpose earthworm robot platform designed to mimic the earthworm’s shape and muscle functions which can be equipped with modules for specific tasks. For example, in the area of agriculture, this platform can be equipped with camera, humidity sensor and soil sample collector to analysis plant's health with minimal disturbance. Another key area is in the search and rescue mission where the earthworm robot can crawl through obstacles, find survivors and potentially deliver nutrition tubes and serve as communication links.

Movement - There are currently two approaches that we are considering. The first uses wire coiled around the each section of the worm which can move independently with the passing current alone either direction to generate magnetic force to attract/repel other coils. An alternating pattern along the body mimics the longitudinal muscles, whereas an alternating pattern around each section mimics the circular muscles (requires an elastic material). The second is a more traditional approach that uses multiple wheels extruding the worm's body to move and control the direction of movement by varying the torque in each wheel.
Controls/Communication - We are going to enable our onboard system to communicate with the computer via wired connection when the robot is above surface, since wireless communication is virtually impossible underground. The movement can be control by both human (carefully with wired connection) and onboard computer.
Power - The power will either be provided by a small array of battery which is inserted between each worm section or an external source through a wire. We will need to determine the power consumption of the unit to deem whether an onboard power system it is viable.
Modules - There are several basic modules that will be attached to the worm robot: camera, soil sampler and strain sensor (to detect the depth). However, the worm robot platform will provide power and signal sockets if the user needs to add more modules.

Onboard power system viability. We need to experiment with the power consumption to see whether this is viable. If not, we can attach a thin and rigid wire for power alongside the communication wire.
The pressure increases as the depth increases. So the structure needs to be strong enough and light enough. For the coil movement design, the structure also need to exhibit a certain degree of elasticity for circular compression/expansion.

In 2014 a similar robot worm design won the Red Dot Award for Design Concept. However, it only imitated the longitudinal muscles and hasn’t seen an implementation. [2][3]
In 2012 MIT developed a worm robot called “Meshworm” made with polymer mesh structure that can contrast and with controlled heat levels. However our proposed design doesn’t intransically suffer from potential environmental conditions such as temperature, and can have a denser formation of joints that is not limited by the transduction of heat. [4]


VoxBox Robo-Drummer

Craig Bost, Nicholas Dulin, Drake Proffitt

VoxBox Robo-Drummer

Featured Project

Our group proposes to create robot drummer which would respond to human voice "beatboxing" input, via conventional dynamic microphone, and translate the input into the corresponding drum hit performance. For example, if the human user issues a bass-kick voice sound, the robot will recognize it and strike the bass drum; and likewise for the hi-hat/snare and clap. Our design will minimally cover 3 different drum hit types (bass hit, snare hit, clap hit), and respond with minimal latency.

This would involve amplifying the analog signal (as dynamic mics drive fairly low gain signals), which would be sampled by a dsPIC33F DSP/MCU (or comparable chipset), and processed for trigger event recognition. This entails applying Short-Time Fourier Transform analysis to provide spectral content data to our event detection algorithm (i.e. recognizing the "control" signal from the human user). The MCU functionality of the dsPIC33F would be used for relaying the trigger commands to the actuator circuits controlling the robot.

The robot in question would be small; about the size of ventriloquist dummy. The "drum set" would be scaled accordingly (think pots and pans, like a child would play with). Actuators would likely be based on solenoids, as opposed to motors.

Beyond these minimal capabilities, we would add analog prefiltering of the input audio signal, and amplification of the drum hits, as bonus features if the development and implementation process goes better than expected.

Project Videos