Project

# Title Team Members TA Documents Sponsor
56 Earthworm Robot
Area Award: Research
Kunakorn Puntawong
Zehua Li
Luke Wendt appendix0.zip
design_document0.pdf
design_document0.pdf
final_paper0.pdf
presentation0.pdf
proposal0.pdf
video
Kunakorn Puntawong(puntawo2)
Zehua Li (zehuali2)

Proposal:

Biomimicry is the approach of seeking solution through emulating nature-inspired solution that has been time-tested over thousands of years. We are inspired by the ability in which earthworm can effortlessly crawl through dirt, sand and obstacles with it’s body structure and movement patterns controlled by their circular and longitudinal muscles. [1] Therefore, our team proposes a general-purpose earthworm robot platform designed to mimic the earthworm’s shape and muscle functions which can be equipped with modules for specific tasks. For example, in the area of agriculture, this platform can be equipped with camera, humidity sensor and soil sample collector to analysis plant's health with minimal disturbance. Another key area is in the search and rescue mission where the earthworm robot can crawl through obstacles, find survivors and potentially deliver nutrition tubes and serve as communication links.

Components:
Movement - There are currently two approaches that we are considering. The first uses wire coiled around the each section of the worm which can move independently with the passing current alone either direction to generate magnetic force to attract/repel other coils. An alternating pattern along the body mimics the longitudinal muscles, whereas an alternating pattern around each section mimics the circular muscles (requires an elastic material). The second is a more traditional approach that uses multiple wheels extruding the worm's body to move and control the direction of movement by varying the torque in each wheel.
Controls/Communication - We are going to enable our onboard system to communicate with the computer via wired connection when the robot is above surface, since wireless communication is virtually impossible underground. The movement can be control by both human (carefully with wired connection) and onboard computer.
Power - The power will either be provided by a small array of battery which is inserted between each worm section or an external source through a wire. We will need to determine the power consumption of the unit to deem whether an onboard power system it is viable.
Modules - There are several basic modules that will be attached to the worm robot: camera, soil sampler and strain sensor (to detect the depth). However, the worm robot platform will provide power and signal sockets if the user needs to add more modules.

Challenges
Onboard power system viability. We need to experiment with the power consumption to see whether this is viable. If not, we can attach a thin and rigid wire for power alongside the communication wire.
The pressure increases as the depth increases. So the structure needs to be strong enough and light enough. For the coil movement design, the structure also need to exhibit a certain degree of elasticity for circular compression/expansion.

Uniqueness
In 2014 a similar robot worm design won the Red Dot Award for Design Concept. However, it only imitated the longitudinal muscles and hasn’t seen an implementation. [2][3]
In 2012 MIT developed a worm robot called “Meshworm” made with polymer mesh structure that can contrast and with controlled heat levels. However our proposed design doesn’t intransically suffer from potential environmental conditions such as temperature, and can have a denser formation of joints that is not limited by the transduction of heat. [4]


[1] https://asknature.org/strategy/independent-segments-enable-burrowing-through-narrow-spaces/#.WI_h9bG3miY
[2] http://www.yankodesign.com/2014/10/03/a-worm-that-get’s-it-all/#Fms0f8dWvhPsiXvr.99
[3] http://www.industrial-design-germany.com/products/robot-robo-worm.html
[4] http://www.livescience.com/22273-new-robot-crawls-like-earthworm.html

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.