# Title Team Members TA Documents Sponsor
56 Earthworm Robot
Area Award: Research
Kunakorn Puntawong
Zehua Li
Luke Wendt
Kunakorn Puntawong(puntawo2)
Zehua Li (zehuali2)


Biomimicry is the approach of seeking solution through emulating nature-inspired solution that has been time-tested over thousands of years. We are inspired by the ability in which earthworm can effortlessly crawl through dirt, sand and obstacles with it’s body structure and movement patterns controlled by their circular and longitudinal muscles. [1] Therefore, our team proposes a general-purpose earthworm robot platform designed to mimic the earthworm’s shape and muscle functions which can be equipped with modules for specific tasks. For example, in the area of agriculture, this platform can be equipped with camera, humidity sensor and soil sample collector to analysis plant's health with minimal disturbance. Another key area is in the search and rescue mission where the earthworm robot can crawl through obstacles, find survivors and potentially deliver nutrition tubes and serve as communication links.

Movement - There are currently two approaches that we are considering. The first uses wire coiled around the each section of the worm which can move independently with the passing current alone either direction to generate magnetic force to attract/repel other coils. An alternating pattern along the body mimics the longitudinal muscles, whereas an alternating pattern around each section mimics the circular muscles (requires an elastic material). The second is a more traditional approach that uses multiple wheels extruding the worm's body to move and control the direction of movement by varying the torque in each wheel.
Controls/Communication - We are going to enable our onboard system to communicate with the computer via wired connection when the robot is above surface, since wireless communication is virtually impossible underground. The movement can be control by both human (carefully with wired connection) and onboard computer.
Power - The power will either be provided by a small array of battery which is inserted between each worm section or an external source through a wire. We will need to determine the power consumption of the unit to deem whether an onboard power system it is viable.
Modules - There are several basic modules that will be attached to the worm robot: camera, soil sampler and strain sensor (to detect the depth). However, the worm robot platform will provide power and signal sockets if the user needs to add more modules.

Onboard power system viability. We need to experiment with the power consumption to see whether this is viable. If not, we can attach a thin and rigid wire for power alongside the communication wire.
The pressure increases as the depth increases. So the structure needs to be strong enough and light enough. For the coil movement design, the structure also need to exhibit a certain degree of elasticity for circular compression/expansion.

In 2014 a similar robot worm design won the Red Dot Award for Design Concept. However, it only imitated the longitudinal muscles and hasn’t seen an implementation. [2][3]
In 2012 MIT developed a worm robot called “Meshworm” made with polymer mesh structure that can contrast and with controlled heat levels. However our proposed design doesn’t intransically suffer from potential environmental conditions such as temperature, and can have a denser formation of joints that is not limited by the transduction of heat. [4]


Cloud-controlled quadcopter

Anuraag Vankayala, Amrutha Vasili

Cloud-controlled quadcopter

Featured Project


To build a GPS-assisted, cloud-controlled quadcopter, for consumer-friendly aerial photography.


We will be building a quad from the frame up. The four motors will each have electronic speed controllers,to balance and handle control inputs received from an 8-bit microcontroller(AP),required for its flight. The firmware will be tweaked slightly to allow flight modes that our project specifically requires. A companion computer such as the Erle Brain will be connected to the AP and to the cloud(EC2). We will build a codebase for the flight controller to navigate the quad. This would involve sending messages as per the MAVLink spec for sUAS between the companion computer and the AP to poll sensor data , voltage information , etc. The companion computer will also talk to the cloud via a UDP port to receive requests and process them via our code. Users make requests for media capture via a phone app that talks to the cloud via an internet connection.

Why is it worth doing:

There is currently no consumer-friendly solution that provides or lets anyone capture aerial photographs of them/their family/a nearby event via a simple tap on a phone. In fact, present day off-the-shelf alternatives offer relatively expensive solutions that require owning and carrying bulky equipment such as the quads/remotes. Our idea allows for safe and responsible use of drones as our proposed solution is autonomous, has several safety features, is context aware(terrain information , no fly zones , NOTAMs , etc.) and integrates with the federal airspace seamlessly.

End Product:

Quads that are ready for the connected world and are capable to fly autonomously, from the user standpoint, and can perform maneuvers safely with a very simplistic UI for the common user. Specifically, quads which are deployed on user's demand, without the hassle of ownership.

Similar products and comparison:

Current solutions include RTF (ready to fly) quads such as the DJI Phantom and the Kickstarter project, Lily,that are heavily user-dependent or user-centric.The Phantom requires you to carry a bulky remote with multiple antennas. Moreover,the flight radius could be reduced by interference from nearby conditions.Lily requires the user to carry a tracking device on them. You can not have Lily shoot a subject that is not you. Lily can have a maximum altitude of 15 m above you and that is below the tree line,prone to crashes.

Our solution differs in several ways.Our solution intends to be location and/or event-centric. We propose that the users need not own quads and user can capture a moment with a phone.As long as any of the users are in the service area and the weather conditions are permissible, safety and knowledge of controlling the quad are all abstracted. The only question left to the user is what should be in the picture at a given time.

Project Videos