# Title Team Members TA Documents Sponsor
48 Universal Automotive Wheel Alignment Sensor System
Isaac Kousari
Michael Danek
Luke Wendt design_document0.pdf
Every year, automotive manufacturers introduce new technologies into their vehicles that increase efficiency and provide meaningful data to facilitate the diagnosis of potential safety or performance issues. Modern vehicles can sense when routine maintenance – such as brake, oil, or tire replacement - is necessary. Despite these technological advances, sensor systems still lack the ability to tell a user when wheel alignment is needed. Among other issues, misaligned wheels cause vehicles to handle unpredictably and increase tire wear.
Currently, consumers can only check their cars’ wheel alignments by making an appointment with a professional and paying for an alignment, which can range anywhere from $50 to hundreds of dollars. Our goal is to develop an alignment-sensing system that can be mounted on any vehicle by an average consumer. Such a system will enable users to determine if their vehicle(s) need an alignment while saving them time and money.
To implement such a system, we will mount an accelerometer and wireless transmitter to each wheel of a car. The data collected will be transmitted to a central hub attached to the chassis, consisting of a microcontroller for data processing and three additional accelerometers used as reference points to determine the camber, caster, and toe of a vehicle. Once alignment data is collected, it will be cross-referenced with a database of OEM alignment specifications for each manufacturer. Until this system is integrated into existing car diagnostic systems, alignment information will be available to users via a smart phone application.
While alignment detection systems already exist, they only appear in race cars where all sensors are mounted to the vehicle chassis. This system would not be feasible for consumer cars because a large percentage of them have been in accidents, meaning that the chassis can be warped and give inaccurate readings.

Low Cost Myoelectric Prosthetic Hand

Michael Fatina, Jonathan Pan-Doh, Edward Wu

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.

Project Videos