Project

# Title Team Members TA Documents Sponsor
48 Universal Automotive Wheel Alignment Sensor System
Isaac Kousari
Michael Danek
Luke Wendt design_document0.pdf
final_paper0.pdf
presentation0.pptx
proposal0.pdf
Every year, automotive manufacturers introduce new technologies into their vehicles that increase efficiency and provide meaningful data to facilitate the diagnosis of potential safety or performance issues. Modern vehicles can sense when routine maintenance – such as brake, oil, or tire replacement - is necessary. Despite these technological advances, sensor systems still lack the ability to tell a user when wheel alignment is needed. Among other issues, misaligned wheels cause vehicles to handle unpredictably and increase tire wear.
Currently, consumers can only check their cars’ wheel alignments by making an appointment with a professional and paying for an alignment, which can range anywhere from $50 to hundreds of dollars. Our goal is to develop an alignment-sensing system that can be mounted on any vehicle by an average consumer. Such a system will enable users to determine if their vehicle(s) need an alignment while saving them time and money.
To implement such a system, we will mount an accelerometer and wireless transmitter to each wheel of a car. The data collected will be transmitted to a central hub attached to the chassis, consisting of a microcontroller for data processing and three additional accelerometers used as reference points to determine the camber, caster, and toe of a vehicle. Once alignment data is collected, it will be cross-referenced with a database of OEM alignment specifications for each manufacturer. Until this system is integrated into existing car diagnostic systems, alignment information will be available to users via a smart phone application.
While alignment detection systems already exist, they only appear in race cars where all sensors are mounted to the vehicle chassis. This system would not be feasible for consumer cars because a large percentage of them have been in accidents, meaning that the chassis can be warped and give inaccurate readings.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos