Project

# Title Team Members TA Documents Sponsor
20 Crowd Monitoring Device
Armando Juresic
William Schellhorn
Luke Wendt appendix0.zip
appendix0.zip
design_document0.pdf
design_document0.pdf
final_paper0.pdf
photo0.jpg
photo0.jpg
presentation0.pptx
proposal0.pdf
Theme parks, airports, hotels, libraries, corporations, etc., all have general ideas of how many people are on their premises throughout the day or year but they do not know the instantaneous count of people over that area.

Our solution for accurately counting individuals entering or exiting an area is a portable device which can be mounted above a door frame. It will consist of several components:

-Mixed sensor module--Passive infrared sensors for detecting a human being about to cross a doorway and trigger ultrasonic sensors
--Ultrasonic sensors for detecting the heights of individuals, whether they are entering or exiting, and determining whether multiple people are crossing the threshold simultaneously
---We will use different frequency ultrasonic sensors focused at different angles to gain topology information at different locations simultaneously
---We will trigger sensors successively to gain topology information at given locations at different times
--Possible infrared camera to better detect boundaries between humans


-Processing module
--Internal microcontroller for A/D conversion and initial signal processing
--External server for advanced signal processing


-Communications module
--Bluetooth or Zigbee to send data from microcontroller to external server


-Power module
--Converts standard outlet power to required sensor, microcontroller, communications module demands

The project is appropriate for senior design because we are dealing with power distribution, communication protocols, and signal processing.

SensorInsight currently provides a camera-based solution for watching crowds flows over a wide area. Our solution is different because we focus on precisely counting people entering or exiting an area. We seek to build a much cheaper solution than one of SensorInisght’s high definition cameras with our mixed sensor module.

Armando Juresic, juresic2
William Schellhorn, schellh2

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos