Project

# Title Team Members TA Documents Sponsor
26 Smart Ladder
Bradden Pesce
Lingying Cai
Luke Wendt design_document0.pdf
final_paper0.pdf
other0.pdf
other0.pdf
other0.pdf
presentation0.pptx
Problem: There are many instances in the workplace where a ladder is required and workers might not take the proper care to insure that the ladder they are using is on a level surface and not on a dangerous incline. It is also a hazard if the worker using the ladder does not notice if the ladder begins to slightly shift or becomes unstable.

Solution: Either a tilt sensor or a flex sensor would be used to detect the stability of the ladder, and then a microcontroller would read the output and tell the speaker to produce a warning if the ladder is not placed on a level enough surface or on an unsafe angle. If the ladder begins to shift while in use, an accelerometer would be used to detect it and the user would be warned to use caution. The warning sound would be saved as a digital sound bit file, and we would implement a DAC so the speaker can play the warning.

Challenges: The worker might not be able to hear the warning sound in many situations, and therefore we would implement LEDs as well so that there is a visual cue for the worker. There could also be a problem where the operator of the ladder has secured the ladder so that the level surface is not an issue; we would add a sound override button that the user can press to disable the sound if necessary. The temperature outside could also affect safety as ice can be present during below freezing temperatures; temperature sensors would be used to detect the temperature outside, and if it is too cold the LEDs would light up to warn the worker to be cautious. Another challenge is that the ladder would be unsafe if too much weight is applied; a pressure sensor would be used on the first step to determine if the ladder would be able to support the weight, and the worker would be warned before they climbed any further.

We are going to determine where the center of gravity of the ladder relative is to the base of stability. A % margin of stability will be calculated based on this signal. We are going to calculate the direction of all the forces on the ladder including gravity and work out the center of mass. This information will be sent to a display that the user can view in order to show the user how close the ladder is to becoming unsafe. We would need load sensors at the base and we will implement a power management system.

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos