Project

# Title Team Members TA Documents Sponsor
30 Amphibious Spherical Explorer
Area Award: Controls
Junhao Su
Kaiwen Chen
Zhong Tan
Luke Wendt design_document0.pdf
final_paper0.pdf
other0.zip
photo0.jpg
presentation0.pptx
proposal0.pdf
video0.m4v
video
The amphibious spherical explorer (ASE) our team is building is mainly for outdoor adventure. The ASE will have no difficulty traveling in water, swamp, dessert, and land due to its spherical shape and pendulum driven principle. Comparing to most robots, ASE will be more versatile since it could travel under most circumstances. As for the other spherical robots, ASE is more adaptable because of its flexible yet enduring shell and at the same time we are aiming to design a better control system to solve the balance issue.

The ASE will be implemented using dual-actuator design consisting of one DC motor and one Servo motor, magnetic encoder, gyroscope, micro-controller, WIFI chip and etc. Specifically, we have decided to build this to be a general-purpose robotic platform as we are planning to leave an I2C bus to interface corresponding interchangeable modules designed for diverse tasks and various usages. The control signal will be sent from PC to the explorer, and the data collected by the task module are transmitted back to the users for debugging. The entire communication process will be accomplished through WIFI.

Our team members have had fair amount of experience in Embedded programming & Control system design, Mechanical CAD, and PCB design which will be efficient through the project building process.

Team members:
Kaiwen Chen (kchen70)
Zhong Tan (zmtan2)
Junhao Su (jsu10)

Smart Patient Gown for Monitoring ECG signals

Michael Luka, Siddharth Muthal, Raj Vinjamuri

Smart Patient Gown for Monitoring ECG signals

Featured Project

Mike, Raj, and Sid created a "Smart Patient Gown for Monitoring ECG/EKG Signals" to improve doctor and nurse workflow and to create a platform for further improved healthcare instrumentation interface.

This project featured:

-Wireless data transmission

-Real-time ECG/EKG Analysis and Diagnostics

-Visual feedback on a patient gown

-Low power circuitry

-Improved comfort compared to current portable ECG devices

Project Videos