Project

# Title Team Members TA Documents Sponsor
28 JargonJolt
Daniel Chamoun
Luke Hartmann
Nan Kang
Angquan Yu design_document1.pdf
final_paper1.pdf
photo1.jfif
photo2.jpg
presentation1.pptx
proposal2.pdf
video
# JargonJolt

Team Members:
- Daniel Chamoun (chamoun2)
- Luke Hartmann (lukegh2)
- Nan Kang (nankang2)

# Problem

When learning a new language, amassing and retaining vocabulary is often one of the most challenging parts of the learning process and can be a choke point for advancing into conversational fluency. It is very easy for people to fall off track when learning a new language/new content, especially in the later stages which can prove detrimental to spaced repetition algorithms. According to an American 2021 study by preply.com, 71% of those surveyed who have given up on learning second languages regret letting their language skills slip. Furthermore, 43% of those people stopped studying due to either a lack of opportunity to practice, boredom, or a perceived high level of difficulty. Our project aims to assist those people to continue their endeavors to learn language.

Flashcard applications that already exist do so primarily as mobile or desktop applications. Desktop applications such as Anki have high functionality, but are not portable and could cause the user to miss days if they do not have access to their PC. Mobile applications require that the user has a smartphone, which is not ideal for certain audiences such as children or elderly. Battery life is also a concern for longer practice sessions.

# Solution

Our solution is the JargonJolt, a digital pet and portable flashcard device that makes consistently practicing your language skills convenient and fun! The JargonJolt will take advantage of the “tamagotchi effect”. Named after the popular toy by Bandai, the tamagotchi effect is the phenomenon of humans becoming emotionally attached to machines, robots, or otherwise inanimate entities. We plan to harness this aspect of human psychology to encourage people to keep up with their daily language review and practice. Nurturing/playing with a digital pet who gets happier as you do better in your flashcard reviews will keep flashcard users more engaged during their reviews as well as more consistent.

Users of the JargonJolt will be able to download Anki flashcard sets, where we will make use of spaced repetition algorithms to show users flashcards in optimal order for memory and knowledge retention. The JargonJolt will feature a low power digital ink screen for displaying both flashcards and the digital pet as well as several buttons for selecting options for responding to flashcards. Applications of similar functionality may exist as smartphone apps, but the JargonJolt has unique advantages that give it cause to exist as a product. The simplicity and toy-like nature of the JargonJolt makes it ideal for children who are not ready for a smartphone or tablet. A rechargeable battery will also allow users to take their JargonJolt on the go without worrying about the battery life of their mobile devices or the cell reception in any given area.

# Solution Components

## Subsystem 1: MCU/PCB Support/Internet Module

The ESP32 will run code to determine which flashcard to show the user, process the user’s button inputs, and change the digital ink display to show both flashcards and the status of the pet. The ESP32 will interface with the memory module to retrieve flashcard data. The MCU module will also contain serial programming pins for flashing the microcontroller. The internet module will be able to connect to the internet to download flashcard data, which will be stored in the memory module.

ESP32 (Mfr. Part #ESP32-S3-WROOM-1-N16)

## Subsystem 2: Power

The JargonJolt will feature a rechargeable battery and a Micro USB-B charging port. The battery supplies a 3v7 rail which will be regulated down to 3v3 by a linear voltage regulator. All electronics down the line (MCU, E-INK, etc.) will run on 3v3. The power module will also contain a barrel jack for tabletop testing before the battery is integrated.

3.7V 1000mAh Lithium Battery (Mfr. Part # ASR00012)

Battery Charger (Mfr. Part # ASL2112)

Linear Voltage Regulator (Mfr. Part # ADP160AUJZ-3.3-R7)

## Subsystem 3: Video

The video subsystem is used for flashcards and the digital pet display. It consists of two low power digital screens, 4.37inch, 512 × 368 resolution, communicating via SPI interface.

2 x 4.37inch E-Paper (G) raw display, 512 × 368, Red/Yellow/Black/White

## Subsystem 4: Memory

The memory module contains external SRAM which will be used to store the flashcard data, allowing the JargonJolt to operate entirely offline once flashcards are downloaded. The microcontroller will interface with the SRAM through an SPI interface.

32Mb, SerialRAM, 2.7V-3.6V (Mfr Part #: IS66WVS4M8BLL-104NLI)

## Subsystem 5: Audio

Having audio support from text on the cards also makes sense to implement. Using I2S protocols, upon showing the answer to a flashcard, audio will also play. The audio data will be stored on SDRAM.

I2S Amplifier (Mfr Part #: MAX98357 I2S)

Speaker (Mfr Part #: CMS-4017-34SP)

# Criterion For Success

Functionality:
- Syncing data between Anki for Desktop app with JargonJolt and vice versa
- Buttons for answering flashcards
- Algorithm for choosing currently displayed flashcard

Display Functionality:
- Upon receiving data from the MCU, successfully display flashcard information
- Display a digital pet based on performance metrics

USB charging capabilities:
- Reasonable battery life using low-power components

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos