Project

# Title Team Members TA Documents Sponsor
30 Power Outlet Quality and Submeter System
Nicole Viz
Roshan Mahesh
Soham Manjrekar
Surya Vasanth design_document1.pdf
design_document2.pdf
final_paper1.pdf
presentation1.pdf
proposal1.pdf
proposal2.pdf
video1.mov
video2.mov
# Power Outlet Quality and Submeter System Project

Team Members:
- Nicole Viz (nviz2)
- Soham Manjrekar (sohammm2)
- Roshan Mahesh (roshanm2)

# Problem

In the rapidly evolving field of power electronics and energy technologies, maintaining consistent and high-quality power distribution and energy usage is critical for residential and commercial buildings. Using submeters can help create energy savings, lower operating costs, increase building efficiency and reliability, and improve occupant comfort. Devices today have several drawbacks, however. They can be cost-inefficient, complex to operate and to read, and they may lack real-time insights. Additionally, they may not employ sufficient power quality monitoring. These shortcomings can lead to difficulty in meeting recent sustainability efforts, and as such, an innovative solution is needed.

# Solution

For our project, we’d like to design and construct an improved device that monitors power quality and acts as a submeter to its loads – a device that is cost-effective, has high-fidelity data acquisition, and operates with an intuitive user interface LCD screen. Our project will solve the problems listed above by combining a power quality monitor along with a submeter in a cost-effective manner that stores real-time data and loads the data to a database that can be accessed through a website. More detailed specifications are presented below. We’ve divided our project into the following subsystems: Microcontroller/Software, Sensors and ICs, and Power. Note: We’ve looked into the work of a group who did a similar project last year and discussed some of the issues they faced; portions of this work will hopefully build on that and improve upon them.

# Solution Components

- Microcontroller/Software
1. ESP-32 or similar
- Offers DSP
- WiFi and Bluetooth Connectivity
- Allows for expansion GPIO to add additional storage
- Low power draw
2. SD Card Module
- To save data in the event of power loss
3. Google Cloud hosting MySQL database or similar
- Any online cheap database management system
- Sensors and ICs
1. Voltage Sensing via Voltage Divider
2. Current Transformer (PA1005.070QNL by Pulse Electronics), measures current as well
3. ADE9153A
- Single Phase Energy Metering IC
4. ADE9430
- Power Quality Metering IC
- Power
1. 5V Li ion Battery (or can investigate other battery options if there are safety concerns with Li ion)
2. 3.3V Linear Regulator (to power PCB with IC’s and microcontroller)

# Criterion for Success

Our criterion for success is divided up into the following 5 categories: software, operation, power quality measurement, submeter measurement, and miscellaneous. These are our criteria for success:
- Software
1. Online database that holds data such as timestamp, voltage, current, power, time of harmonic disturbances/power outages/voltage changes larger than 5%
- Upload data to database every 15 minutes using WiFi/bluetooth
2. Displays waveforms of power outlet current and voltage
3. Displays whether or not there’s a power quality issue (for harmonic disturbances/power outages/voltage changes larger than 5%), the type of issue, followed by a notification
- Operation
1. Self powering our device for at least 24 hours
- Power Quality Measurement
1. Record harmonic disturbances 20 ms before and after
2. Record voltage changes larger than 5%, or power failures
3. Send this data to database when failures/disturbances occur
- Submeter Measurement
1. Measure voltage, current, power of electrical load
2. Have an LCD Screen displaying instantaneous voltage, current, power
- Miscellaneous / Stretch Goals
1. Keep construction costs as low as reasonably possible
2. Make device lean and visually tidy

Propeller-less Multi-rotor

Ignacio Aguirre Panadero, Bree Peng, Leo Yamamae

Propeller-less Multi-rotor

Featured Project

Our project explored the every-expanding field of drones. We wanted to solve a problem with the dangers of plastic propellers as well as explore new method of propulsion for drones.

Our design uses a centrifugal fan design inspired by Samm Shepard's "This is NOT a Propeller" video where he created a centrifugal fan for a radio controlled plane. We were able to design a fan that has a peak output of 550g per fan that is safe when crashing and when the impeller inside damaged.

The chassis and fans are made of laser-cut polystyrene and is powered using brushless motors typically used for radio-controlled helicopters.

The drone uses an Arduino DUE with a custom shield and a PCB to control the system via Electronic Speed Controllers. The drone also has a feedback loop that will try to level the drone using a MPU6050.

We were able to prove that this method of drone propulsion is possible and is safer than using hard plastic propellers.

Project Videos