Project

# Title Team Members TA Documents Sponsor
29 Automatic Drone Wireless Charging Station
Jason Wuerffel
Pranshu Teckchandani
Samuel Fakunle
Matthew Qi design_document1.pdf
design_document2.pdf
final_paper1.pdf
photo1.jpeg
photo2.jpeg
presentation1.pdf
proposal2.pdf
proposal1.pdf
video
# Title
**Automatic Drone Wireless Charging Station**

Team Members:
- Samuel Fakunle (sof2)
- Pranshu Teckchandani (pat4)
- Jason Wuerffel (jasonmw2)

# Problem

Drone technology is becoming more vital for our modern society because it improves productivity and precision for several applications. Despite this, the operation time continues to be a key technological challenge because of the drone’s battery life limitations. As a result, our project aims to address this issue by implementing an automated drone charging system that extends the drone’s flight time without human intervention.

# Solution

Our group aims to use resonant inductive coupling to develop a wireless drone charging station that allows the drone to land and charge its battery within an acceptable distance from the transmitter. In addition, our implementation should allow for efficient charging anywhere or in multiple locations on the charging pad, indicate when sufficient charging has been completed, and should start power transfer only when the drone lands on the pad. We may also add an optional feature where the drone can track back to the pad when low on battery but it is an additional feature we will implement only if time permits.

# Solution Components

## Subsystem 1: DC-AC Converter to Transmission Coil

This inverter is responsible for converting DC power to AC power for the activated transmitting coil

- Circuit consisting of resistors, capacitors, inductors, switches, etc.
- Could use renewable power supply or power bank (undecided)


## Subsystem 2: Transmitting and Receiving Coil for Charging

This subsystem focuses on the coils used in order for contact to be made between the drone and charging station.

- Both coils made of metal (likely aluminum or copper)
- Transmitting coil keeps the drone an adequate distance above the ground and is constrained by the size of the drone
- Receiving coil attached to drone acts as secondary part of transformer
- Charging pad made up of several transmitting coils to allow for no need for precise landing
- Microcontroller will be used to determine the optimal transmitting coil from the transmitting coil array on the charging pad in order to achieve maximum efficiency. This would be done by calculating each coil’s input impedance, and then activating the coil that results in the highest input impedance. The microcontroller will indicate when charging is complete using an LED indicator
- If time permits, we could develop an app that shows charging progress of the drone

Microcontroller: https://www.digikey.com/en/products/detail/espressif-systems/ESP32-DEVKITC-VIE/12091811?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Low%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-12091811_sig-CjwKCAiA8NKtBhBtEiwAq5aX2Nvf7wYlrJvAtHab7cw0ecC0E7rdqjRA_Iy8-0jjQLlCNVKipQhMVRoCslsQAvD_BwE&gad_source=1&gclid=CjwKCAiA8NKtBhBtEiwAq5aX2Nvf7wYlrJvAtHab7cw0ecC0E7rdqjRA_Iy8-0jjQLlCNVKipQhMVRoCslsQAvD_BwE


## Subsystem 3: AC-DC Converter

This subsystem includes a full bridge rectifying circuit with a low pass filter. Converts AC power from the receiving coil to DC power for the voltage regulator

- Circuit consists of resistors, diodes, capacitors, inductors, etc.

## Subsystem 4: Voltage regulator

This subsystem will be a voltage regulator responsible for supplying regulated DC power to the drone’s battery.

## OPTIONAL(IF TIME PERMITS) - Subsystem 5: Drone Control System

This subsystem includes the sensors that allow the drone to find its way back to the charging station.

- Proximity sensors for drone to know when it is close to charging station
- Low battery indicator
- Tracking tags and camera to detect the charging station

Proximity Sensor - https://www.digikey.com/en/products/detail/sharp-socle-technology/GP2Y0E02B/4103879?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_High%20ROAS%20Categories&utm_term=&utm_content=&gad_source=1&gclid=CjwKCAiA8NKtBhBtEiwAq5aX2OJn1KocKkbImYp4gjIzr5wiMJSYczVw6uVYCuu517q7w6XyPQFocxoCQjMQAvD_BwE

# Criterion For Success - Base Project

1. Successful Conversion: Converter circuits are able to correctly convert DC to AC and vice versa.
2. Wireless Power Transfer: Charging pad is able to charge the drone efficiently without human intervention. We will have a lower bound for acceptable efficiency.
3. Battery Indicator : The charging pad indicates when the battery is completely charged.
4. Charging only in close proximity: Start charging only when the charging pad detects that the drone is in close proximity.

If do complete the above criteria in time, we will try to accomplish the following:

- (Optional) Navigational Success: Drone is able to navigate to the charging station and dock.

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos