Project

# Title Team Members TA Documents Sponsor
23 Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century
Saif Kazmi
Savannah Moon Pagan
Sebastian Carrera
Jialiang Zhang final_paper1.pdf
other1.pdf
presentation1.pdf
proposal1.pdf
proposal2.pdf
# Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century

Team Members:
- Savannah Pagan (spagan6)
- Saif Kazmi (skazmi21)
- Sebastian Carrera (carrera9)

# Problem
Describe the problem you want to solve and motivate the need.

Disposal of outdated technology contributes to approximately 50 million tons of e-waste annually, leading to environmental concerns. Our project aims to demonstrate a sustainable approach to repurposing technology from the past, diverting it from landfills and back into the consumers’ hands.

Specifically, by modernizing old devices, like updating the original iMac G3 to modern computing standards, as well as its original peripherals, such as the mouse included with the device, we not only extend the lifespan of these devices but also preserve their original creative style and design intent. This initiative will align vintage technology with modern computing needs, ultimately fostering a more eco-friendly and innovative technological landscape.

# Solution

Our project aims to replace legacy hardware within the 1998 iMac G3 by utilizing the internal components of a newer Mac Mini computer. The new components will be mounted inside the original iMac shell to give new life to this outdated machine. The original CRT screen will be replaced with a newer LCD screen. The original speakers and disc drive of the iMac will be re-utilized as well, and the ports will be upgraded to the relevant modern port types.

We also aim to update the original Apple USB mouse included with the device by using modern optical sensors and bluetooth to replace the legacy hardware. A modern switch of higher quality and durability will replace the original switch used for the mouse button and rather than physical rollers interacting with a rubberized ball on the bottom of the mouse, we will use an optical sensor to detect mouse movement. The user can customize the sensitivity of the mouse, a feature unavailable on the original hardware. The USB connection will be replaced with bluetooth to communicate with a computer. Due to its wireless nature, the mouse will be battery powered. The mouse can detect when it is not being used and automatically shut off as a battery saving measure, similar to modern bluetooth mice.

# Solution Components
2014 Mac Mini - 8GB RAM, 1 TB of storage

The Mac Mini will be utilized to update the iMac G3 to modern computing standards.

Mouse button

An Omron D2LS-21 switch will be used for the mouse button. It will be placed strategically on our PCB to avoid or minimize modification of the original mouse housing.
https://www.mouser.com/ProductDetail/Omron-Electronics/D2LS-2110M?qs=OcgtsXO%252B3gvFuywVVfHEYw%3D%3D

Optical sensor

A PixArt PMW-3389 or PMW-3360 optical sensor will be used to detect mouse movement. These sensors are commonly used in modern mice. They can be purchased separately, or salvaged from an extremely wide variety of mice.
https://www.tindie.com/products/citizenjoe/pmw3389-motion-sensor/

Bluetooth connectivity/Microcontroller

An ESP32 microcontroller will be used to communicate with the computer over Bluetooth. Additionally, it can process sensor inputs and determine whether the mouse is idle.

Battery/Charging

Our goal is to use a rechargeable lithium ion battery. If space permits, we will use a USB-C connector for charging due to its ubiquity. If this proves to be impractical due to space constraints, we will use a barrel jack, though this is a last resort.

# Criterion For Success

The iMac powers on
The iMac LCD display turns on
The iMac can connect to WiFi
The iMac can function as well as a modern laptop, meaning that it can run multiple applications at once, as well as perform actions within these applications
The iMac ports function
The iMac has Bluetooth connectivity functionality
The mouse can connect to a modern computer with bluetooth
The mouse can provide clicking functions to a modern computer
The mouse can accurately move a cursor on a modern computer
Disregarding the missing USB cable, the mouse must be visually unchanged from the original product
The mouse must last for ??? hours of use (to be determined depending on type of batteries chosen to work with, at least a few hours of charge)

Habit-Forming Toothbrush Stand

John Kim, Quinn Palanca, Rahul Vasanth

Habit-Forming Toothbrush Stand

Featured Project

I spoke with a TA that approved this idea during office hours today, and they said I should submit it as a project proposal.

# Habit-Forming Toothbrush Stand

Team Members:

- Rahul Vasanth (rvasant2)

- Quinn Andrew Palanca (qpalanc2)

- John Jung-Yoon Kim (johnjk5)

# Problem

There are few habits as impactful as good dental hygiene. Brushing teeth in the morning and night can significantly improve health outcomes. Many struggle with forming and maintaining this habit. Parents might have a difficult time getting children to brush in the morning and before sleep while homeless shelter staff, rehab facility staff, and really, anyone looking to develop and track this habit may want a non-intrusive, privacy-preserving method to develop and maintain the practice of brushing their teeth in the morning. Keeping track of this information and but not storing it permanently through a mobile application is something that does not exist on the market. A small nudge is needed to keep kids, teenagers, and adults of all ages aware and mindful about their brushing habits. Additionally, many tend to zone out while brushing their teeth because they are half asleep and have no idea how long they are brushing.

# Solution

Our solution is catered toward electric toothbrushes. Unlike specific toothbrush brands that come with mobile applications, our solution applies to all electric toothbrushes, preserves privacy, and reduces screen time. We will implement a habit-forming toothbrush stand with a microcontroller, sensors, and a simple LED display that houses the electric toothbrush. A band of sensors will be wrapped around the base of the toothbrush. Lifting the toothbrush from the stand, turning it on, and starting to brush displays a timer that counts seconds up to ten minutes. This solves the problem of brushing too quickly or losing track of time and brushing for too long. Additionally, the display will provide a scorecard for brushing, with 14 values coming from (morning, night) x (6daysago, 5daysago, . . . , today) for a "record" of one week and 14 possible instances of brushing. This will augment the user's awareness of any new trends, and potentially help parents, their children, and other use cases outlined above. We specifically store just one week of data as the goal is habit formation and not permanent storage of potentially sensitive health information in the cloud.

# Solution Components

## Subsystem 1 - Sensor Band

The sensor band will contain a Bluetooth/Wireless Accelerometer and Gyroscope, or Accelerometer, IR sensor (to determine height lifted above sink), Bluetooth/Wireless connection to the microcontroller. This will allow us to determine if the electric toothbrush has been turned on. We will experiment with the overall angle, but knowing whether the toothbrush is parallel to the ground, or is lifted at a certain height above the sink will provide additional validation. These outputs need to be communicated wirelessly to the habit-forming toothbrush stand.

Possibilities: https://www.amazon.com/Accelerometer-Acceleration-Gyroscope-Electronic-Magnetometer/dp/B07GBRTB5K/ref=sr_1_12?keywords=wireless+accelerometer&qid=1643675559&sr=8-12 and individual sensors which we are exploring on Digikey and PCB Piezotronics as well.

## Subsystem 2 - Toothbrush Base/Stand and Display

The toothbrush stand will have a pressure sensor to determine when the toothbrush is lifted from the stand (alternatively, we may also add on an IR sensor), a microcontroller with Bluetooth capability, and a control unit to process sensor outputs as well as an LED display which will be set based on the current state. Additionally, the stand will need an internal clock to distinguish between morning and evening and mark states accordingly. The majority of sensors are powered by 3.3V - 5V. If we use a battery, we may include an additional button to power on the display (or just have it turn on when the pressure sensor / IR sensor output confirms the toothbrush has been lifted, or have the device plug into an outlet.

# Criterion For Success

1. When the user lifts the toothbrush from the stan and it begins to vibrate (signaling the toothbrush is on), the brushing timer begins and is displayed.

2. After at least two minutes have passed and the toothbrush is set back on the stand, the display correctly marks the current day and period (morning or evening).

3. Track record over current and previous days and the overall weekly record is accurately maintained. At the start of a new day, the record is shifted appropriately.

Project Videos