Project

# Title Team Members TA Documents Sponsor
10 Automated Video Capture Bird Feeder with Data Collection
Colten Brunner
John Golden
Kevin Li
Nikhil Arora design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pptx
proposal2.pdf
video
# Automated Video Capture Bird Feeder with Data Collection

Team Members:
Kevin Li (kli56)
Colten Brunner (cbrunner)
John Golden (jgolden4)

# Problem

Many nature enthusiasts enjoy watching birds outside of their windows with homemade or store bought feeders. This practice has been going on for many years, but until recently it has been impossible to see the birds feeding without being present. With modern day technology, it has become possible to mount cameras onto or adjacent to bird feeders in order to see birds feeding, but in the new era of information technology, there should be more to bird feeders than simple footage. We seek to add onto an automated video capture system by including data capture to analyze when peak feeding hours occur. This problem is one that occurs for common bird watchers and ornithologists alike. Whether it is knowing when to sit in front of your bird feeder or wanting to collect feeding data in specific areas, this is a problem that necessitates a solution.

# Solution
The solution we propose involves a bird feeder that has a camera to turn on when motion is detected. The idea is to have an ultrasonic transducer that would trigger a camera to record for a given set of time if motion is detected. In addition specific data points that would be beneficial to nature enthusiasts would be acquired and stored. These would include time intervals when birds arrive to identify peak bird times and would be stored along with the video footage on an sd card.

# Solution Components

## Subsystem 1 - Video Capture

This subsystem focuses on capturing video footage triggered by the ultrasonic transducer. Components include: An ultrasonic transducer to detect motion and alert the camera to start recording, a microcontroller for processing video data and triggering the camera system as well as transmitting bird tracking data, and a camera that will take videos of the birds feeding.

## Subsystem 2 - Data Collection

Data Collection will be important to the end user and so require a separate system to ingest the data and store it properly for later usage. This will require connections to other subsystems to check for example if the camera is turned on and will require a storage component in addition to a processing unit.

## Subsystem 3 - Power System

A power system is required to power the other subsystems and during testing this will be done through dc power supply with potentially additional voltage regulations. Ideally in the final project all subsystems would be powered by a battery pack.

## Subsystem 4 - Bird Feeder

The bird feeder subsystem is the physical enclosure that stores the bird seed as well as houses all the electronic components. This means that fire hazard concerns need to be taken into account as well as protective measures for the camera due to the outdoor location of the bird feeder. The camera also needs to be protected from the elements while still maintaining unimpeded motion capture.


# Criterion For Success

-Video footage of birds feeding is successfully captured and stored in specific time intervals.

-The motion detector is sensitive to birds and wildlife, minimizing unnecessary background "noise."

-A collection of the time intervals when the birds would arrive for feeding and have the peak times the birds are out.

-The bird feeder successfully distributes food into the “feeding area” until the reservoir is completely empty.

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos