Lectures :: ECE 445 - Senior Design Laboratory

Lectures

Spring 2023 Lecture Material:

 

Lecture #1:

(February 17, 2023)

 

 

Getting Started

  • Welcome to the class! (pptx, pdf)

 

 

Pre-Lecture #2:

(before February 24, 2023)

 

 

Beyond Ideation

 

 

Lecture #2:


(February 24, 2023)

 

 

Moving Forward

  • RFA, Proposal, High-Level Requirements, R&V Tables, and Block Diagram details (Slides)

 

Pre-Lecture #3:


(before March 3, 2023)

 

 

Design and Writing Tips

 

 

Lecture #3:


(March 3, 2023)

 

 

Last stop before the Proposal

  • Introduction (pptx)
  • Proposal Details (pptx)
  • Proposal Logistics (pptx)
  • Lab Notebooks (pptx)

 

Pre-Lecture #4:


(before March 10, 2023)

 

 

PCB Exercise Tips

  • Modular Design & Circuit Debugging (pdf)
  • Why PCB Exercise? (pptx)

 

Lecture #4:


(March 10, 2023)

 

 

Intellectual Property

  • Patents - Henry Wang, President IPwe
  • Weekly Meetings Info (pptx)
  • Proposal Q&A

Spring 2020 Video Lectures:

Brainstorming

Finding a Problem (Video)
Generating Solutions (Video)
Diving Deeper (Video)
Voting (Video)
Reverse Brainstorming (Video)
Homework for Everyone (Video)

Important Information

Using the ECE 445 Website (Video)
Lab Notebook (Video , Slides)
Modular Design (Video, Slides)
Circuit Tips and Debugging (Video , Slides)
Spring 2018 IEEE Soldering Workshop (Slides)

Major Assignments and Milestones

Request for Approval (Video, Slides)
Project Proposal (Video, slides)
Design Document (Video, slides)
Design Review (Video, slides)
Writing Tips (Video, slides)

Tea Blend Distributor

Zhenzuo Si, Zhiyuan Wang, Ruiqi Ye, Anyu Ying

Featured Project

# TEAM MEMBERS:

- Zhenzuo si (zsi2)

- Ruiqi Ye (ruiqiye3)

- Zhiyuan Wang (zw39)

- Anyu Ying (anyuy2)

# PROBLEM

Tea is a popular beverage but cannot be easily obtained like coffee because no machine on the market can make it as convenient to drink tea as a coffee machine. Additionally, people’s requirements for the type and strength of tea are just as complex as those for coffee. We want to design a device that allows users to input the type of tea they want to drink and their taste preferences and then receive a cup of tea that meets their requirements.”

# SOLUTION OVERVIEW

This machine has a total of five systems: an interactive subsystem that receives user input, a control subsystem that controls all other subsystems, a solid storage subsystem for storing tea leaves, a tea brewing subsystem that adds an appropriate amount of water at the right temperature, and a flavour subsystem for adding additional ingredients such as milk and sugar.

# SOLUTION COMPONENTS

##INTERACTIVE SUBSYSTEM

The interactive subsystem includes a series of digital displays and buttons for users to adjust parameters related to taste, such as tea strength, temperature, and concentration of additional ingredients. It is also capable of delivering this data to the control subsystem.

## CONTROL SUBSYSTEM

The control subsystem is capable of transmitting signals to other subsystems and can control the number of tea leaves and additional ingredients used, as well as the temperature and amount of water used, and the overall brewing time.

## TEA BREWING SUBSYSTEM

The tea brewing subsystem includes a mixing tank that can store the added tea leaves, water, and additional ingredients and can dispense the brewed tea and tea leaves together at the set time.

## FLAVOR SUBSYSTEM

The flavouring subsystem includes tanks for storing syrup and milk, as well as pipelines and valves for adding a predetermined amount of syrup and milk based on instructions from the control subsystem.

# CRITERION FOR SUCCESS

After users set their taste preferences on the front-end interface, they can wait for a certain amount of time and then enjoy a cup of tea that meets their preferences. After each tea-making process, the machine’s interior is relatively clean and there are no residual tea leaves that could affect the taste or food safety.

# DISTRIBUTION OF WORK

Zhiyuan Wang is responsible for designing the mechanical structure, including the outer shell, storage compartment, and liquid pipelines. Anyu Ying is responsible for designing and soldering the circuit board. Zhenzuo Si and Ruiqi Ye are responsible for developing and debugging the control and interaction systems.