Final Presentation

Description

Presentations of the projects are given a few days after the Final Demo to an audience of fellow student reviewers, the lab instructors, and occasionally faculty or even students from outside the class who are following up a project of personal interest to them. The style is formal and professional, and students should dress accordingly.

Requirements and Grading

Each project team has 25 minutes for a Powerpoint presentation and questions. Every group member must present their own work contributing to the project and be ready to answer questions. Individual grades are given, and everyone in the audience participates in evaluating the presentation. Talks are judged on the basis of presentation technique and of technical organization and content.

Points of technique include dress, use of display materials and their design for readability, clarity of speech, absence of annoying mannerisms, proper eye contact with audience and smooth transitions between speakers. Content is judged on use of a proper introduction, orderly and connected development of ideas, absence of unnecessary details, proper pacing to stay within the allotted time, and an adequate summary at the close of the talk. Quantitative results are expected whenever applicable. Here is a general outline to follow:

  1. Introduction
  2. Objective
  3. Review of original design, requirements, and verifications
  4. Description of project build and functional tests
  5. Discussion of successes and challenges, as well as explanations of any failed verifications demonstrating and understanding of the engineering reason behind the failure
  6. Details of other tests including tests not explicitly required for verification procedures
  7. Recommendations for further work

Any significant relevant ethical issues should be briefly addressed, preferably in a single slide.

Presentations will be graded using the presentation grading rubric. Two sample Presentation documents - with notes at the top - are available at: Sample PRES 1, Sample PRES 2

Here are some recent presentations you can refer to: FA20_Team13, FA20_Team3

Submission and Deadlines

Slides for your final presentation must be uploaded to your project page on PACE prior to your presentation time. Deadlines for signing up may be found on the Calendar. Sign-up for the final presentation is done through PACE. Remember to sign up for a peer review of another group.

Recovery-Monitoring Knee Brace

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.