Project

# Title Team Members TA Documents Sponsor
20 Touch Controlled Programmable DC Power Supply Circuit
Chaoli Xia
Sichen Wang
Weisong Shi
Yiyi Wang
design_document1.pdf
proposal2.pdf
proposal1.pdf
Aili Wang
# MEMBERS:
- **Weisong Shi** weisong4
- **Chaoli Xia** chaolix2
- **Yiyi Wang** yiyi4
- **Sichen Wang** sichenw2

# TITLE:
**Touch Controlled Programmable DC Power Supply Circuit**

# PROBLEM:
Numerous electronic devices are powered by varying DC voltage levels. For instance, cell phones, watches, and Kindles all require a 5V voltage adapter, whereas a laptop adapter supplies the motherboard with 12V. There are a variety of models, standards, and power supply methods for electronic devices, which can make powering them both inconvenient and problematic. Accommodating these diverse standards can be challenging. So in this project, we aim to build an intuitive, touch-controlled and programmable DC power supply to avoid the limitations.

# SOLUTION OVERVIEW:
The aim of this project is to develop printed circuit board (PCB) level touch-controlled programmable DC power supply circuits that can accommodate these diverse DC voltage levels. Its configuration adjustments are initiated by touch, fusing technology. The design integrates an AC-DC converter, variable regulated power supply, touch control circuit, and short circuit protection, creating a flexible and safe power supply solution.

# SOLUTION COMPONENTS:
- **AC-DC Converter:**
This component efficiently converts AC to DC to power the circuit. It includes a step-down transformer, a bridge rectifier, a low-pass filter circuit, an LED indicator, switch and fuse to ensure efficient and reliable power conversion.
- **Variable Regulated Power Supply Circuit:**
This component provides a stable and adjustable DC output to fulfill diverse voltage requirements. It includes Variable voltage regulator from TI or ADI, and variable voltage control circuits for outputting different voltage levels.
- **Touch Control Circuit:**
This component allows touch-sensitive controls for user interaction.It includes touch sensors (touch plate), digital IC and other circuits to produce control signal for the variable voltage control circuits.
- **Short Circuit Protection Circuit:**
This component ensures the safety of the circuit and the connected devices by detecting and preventing short circuits. It includes current sensors and overcurrent protection components.

# CRITERION FOR SUCCESS:
- **Diverse Voltage Accommodation:**
The power supply circuit should be able to efficiently supply a wide range of DC voltage levels to meet diverse application requirements.
- **Touch Controlled:**
The touch-controlled system should be intuitive and responsive.
- **Short Circuit Protection:**
The circuit should effectively detect and respond to short circuits.
- **Stablity and Reliability:**
* The variable regulated power supply should deliver stable and accurately regulated DC output under varying load conditions.
* The PCB design should be reliable and efficient.

# DISTRIBUTION OF WORK:
- **Weisong Shi & Chaoli Xia (ECE):**
* Design and implement the touch control circuit.
* Develop the algorithm for short circuit detection and protection.
- **Yiyi Wang & Sichen Wang (EE):**
* Design the AC-DC converter circuit, considering efficiency and safety.
* Design the variable regulated power supply circuit, considering the stability and the voltage range.
- All the team members will contribute to the documentation, including circuit diagrams, PCB layouts, and code documentation. We will also collaborate on testing the integrated system to ensure the functionality.

VoxBox Robo-Drummer

Featured Project

Our group proposes to create robot drummer which would respond to human voice "beatboxing" input, via conventional dynamic microphone, and translate the input into the corresponding drum hit performance. For example, if the human user issues a bass-kick voice sound, the robot will recognize it and strike the bass drum; and likewise for the hi-hat/snare and clap. Our design will minimally cover 3 different drum hit types (bass hit, snare hit, clap hit), and respond with minimal latency.

This would involve amplifying the analog signal (as dynamic mics drive fairly low gain signals), which would be sampled by a dsPIC33F DSP/MCU (or comparable chipset), and processed for trigger event recognition. This entails applying Short-Time Fourier Transform analysis to provide spectral content data to our event detection algorithm (i.e. recognizing the "control" signal from the human user). The MCU functionality of the dsPIC33F would be used for relaying the trigger commands to the actuator circuits controlling the robot.

The robot in question would be small; about the size of ventriloquist dummy. The "drum set" would be scaled accordingly (think pots and pans, like a child would play with). Actuators would likely be based on solenoids, as opposed to motors.

Beyond these minimal capabilities, we would add analog prefiltering of the input audio signal, and amplification of the drum hits, as bonus features if the development and implementation process goes better than expected.