Project

# Title Team Members TA Documents Sponsor
22 Fingerprint Recognition Door Lock
Chengrui Wu
Hanggang Zhu
Haoran Yuan
Lizhuang Zheng
design_document1.pdf
proposal1.pdf
Meng Zhang
# Team Members

Chengrui Wu (cw70)
Hanggang Zhu (hz66)
Haoran Yuan (haorany7)
Lizhuang Zheng (lzheng17)

# Project Title

Fingerprint Recognition Door Lock

# Problem

In our Residential College dormitories, each room door requires a student IC card to unlock. However, sometimes students may forget to bring their own card with them when they are out. The current solution is to apply for a temporary card, so a fingerprint recognition door lock can be a better solution. Currently, most fingerprint recognition door locks are integrated units. To install a new one, users must remove the entire old lock, typically requiring professional assistance. But updating all the locks in the Residential College is a huge project, and may affect students’ daily life. Thus, we propose a more user-friendly solution that allows users to integrate advanced fingerprint recognition technology with their current locks, without the needs of extensive installation processes, so that students can install the device by themselves.

# Solution Overview

We aim to create a smart, compact device that can be added to existing locks, enabling fingerprint-based unlocking. So that students can install the device easily by themselves. This device will feature a fingerprint recognition module, a control unit, mechanisms for lock interaction, a mobile app for management and GPS integration, and a wireless communication module. Besides, a security module and a power supply module are needed to support other subsystems.

# Solution Components

## Capacitive Fingerprint Sensor Module

This module will feature a state-of-the-art capacitive fingerprint sensor, known for its high sensitivity and accuracy in capturing detailed fingerprint images. It is designed to efficiently transmit high-resolution fingerprint image data to the Fingerprint Recognition Subsystem. The sensor's advanced technology allows it to quickly and accurately read a fingerprint, even under varying environmental conditions. Its compact size and low power consumption make it an ideal choice for integration into the smart door lock system. The sensor will be interfaced with the STM32 development board, ensuring seamless communication and data transfer between the sensor and the Fingerprint Recognition Subsystem.

## Fingerprint Recognition Subsystem

This will be a high-precision module with algorithms capable of accurately identifying the user's unique fingerprint patterns. It will also be able to store multiple fingerprints the user registered, for shared use among the user and other authorized individuals. The code implementation will be written into STM32 develop board to output True/False signal to the downstream controller subsystem.

## Controller Subsystem

This will be a microcontroller that manages the operations of the device, including processing fingerprint data, controlling lock mechanisms, and coordinating with the mobile app and a wireless communication module designed to retrieve messages from the app. We may choose a STM32 develop board with Wi-Fi module as the platform.

## Software UI

A mobile app for fingerprint recording and remote lock control. It will allow users to manage their fingerprints, remotely control the lock, and adjust settings such as auto-lock and unlock. It will also provide notifications about lock status and usage.

## Wireless Communication Module

An ESP8266 microchip for Wi-Fi connectivity with secure protocols, and a GPS module for location tracking. The microchip will provide the device with Wi-Fi connectivity to communicate with the mobile app, receive updates, and enable remote access and control. The module will also use secure protocols to ensure data privacy and security. Based on the GPS location of the users’ mobile phone, it will allow the lock to unlock automatically when the user's phone is nearby, and lock automatically when it is too far away,

## Security Module

The security module ensures secure wireless communications and app usage, prevents unauthorized access, and verifies user identity. It uses advanced encryption for data transmission and includes mechanisms for detecting and reporting security breaches.

## Mechanical Engine

An actuator to engage/disengage the existing lock mechanism. These will be designed to be compatible with the dorm lock design and will physically engage and disengage the lock mechanism in response to input from the control unit.

## Power Supply Subsystem

This system will include a battery and other components used to power up all the subsystems above, it should be able to last for a significant period.

# Criterion for Success

- Efficient and accurate fingerprint-based unlocking.
- Remote access and control of the lock's status through the app, ensuring exclusive user access.
- Ease of installation and removal from the existing lock, with robust security.
- Lock the door from inside, when the person is left

# Distribution of Work

- Chengrui Wu: Microcontroller and Software App
- Hanggang Zhu: Software App, Fingerprint Recognition and Security Module
- Haoran Yuan: Wireless Communication and Fingerprint Recognition, Chip and sensor selection.
- Lizhuang Zheng: Mechanical Engine, Microcontroller and Power Supply Subsystem

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.