Project

# Title Team Members TA Documents Sponsor
29 Advanced Modeling and Display of ZJU International Campus Power System
Erkai Yu
Jiahe Li
Tiantong Qiao
Yilang Feng
design_document1.pdf
final_paper1.pdf
final_paper2.pdf
proposal1.pdf
Ruisheng Diao
# Team Member (NetId)
- Tiantong Qiao(tqiao4)
- Erkai Yu (erkaiyu2)
- Jiahe Li (jiaheli2)
- Yilang Feng(yilangf2)

# Problem
The electricity consumption of Haining International Campus of Zhejiang University is high and the visualization is not very intuitive, we intend to build a highly visual electricity consumption model. In addition, features such as AI prediction and intelligent control may be added to optimize the power consumption of the Haining campus.

# Solution
Our project plan is to build a physical model of the power system in the Haining International Campus of Zhejiang University and to perform power flow calculations using electricity consumption data from the Engineering Department. The brightness/different colors of LED strips are used to represent the current, voltage, power and other information. Based on this, anomaly detection can be implemented for various types of behaviors within the grid, such as abnormal user behaviors and grid infrastructure failures.

Given the historical data of power consumption, we can build a vivid demonstration of the power flow inside the campus across the year. Based on that, we can also make predictions of how the power usage will change in the future. If given the live data of power consumption, we will be able to integrate them into our system, both for live demonstration and power monitoring.

We also plan to use event-driven algorithms to autonomously detect abnormal conditions or disturbances. Other advanced applications, such as AI intelligent control, grid loss calculation, and installation and connection of distributed wind/photovoltaics power sources can also be developed.

# Solution Components (and Distribution of Work)

1. Physical model of the campus
-- Solid modeling of international campus districts using 3D printing technology or other modeling methods(Yilang Feng)
2. Power Flow Calculations -- Use software such as OpenDSS or Matpower to calculate the power flow of the electricity consumption of the campus(Tiantong Qiao), and control the LED light bar to display horizontally.(Erkai Yu)
3. Advanced Applications: -- Power usage anomaly detection, AI intelligent control, event-driven short circuit analysis, grid loss calculation, distributed photovoltaic generation, etc(Jiahe Li).

# Criterion for Success

The success of our project hinges on achieving key performance criteria, including the precision and accuracy of our power flow modeling. Utilizing software like OpenDSS or Matpower, we aim to attain a high level of accuracy in depicting the power flow within the campus, ensuring close alignment with historical and real-time power consumption data. In parallel, the construction of a physically accurate model of the international campus, employing 3D printing technology or other methods, is crucial for creating an immersive and realistic demonstration. Additionally, the implementation of LED strips with varying colors and brightness levels, responsive to calculated power flow and real-time data, is essential for effective representation. Furthermore, the success criteria encompass the accurate prediction of future power usage based on historical data, validation against real-time data, seamless integration of live power consumption data, and the autonomous detection of abnormal conditions through event-driven algorithms. The project's success is further evaluated through the successful implementation and practical assessment of advanced applications such as AI intelligent control, grid loss calculation, and the integration of distributed wind/photovoltaic power sources to enhance the overall capabilities of the campus power system.

Clickers for ZJUI Undergraduate

Bowen Li, Yue Qiu, Mu Xie, Qishen Zhou

Featured Project

# TEAM MEMBERS

Bowen Li (bowenli5)

Qishen Zhou (qishenz2)

Yue Qiu (yueq4)

Mu Xie (muxie2)

# PROBLEM

I-clicker is a useful teaching assistant tool used in undergraduate school to satisfy the requirement of course digitization and efficiency. Nowadays, most of the i-clickers used on campus have the following problems: inconsistency, high response delay, poor signal, manual matching. We are committed to making an i-clicker for our ZJUI Campus, which is economical, using 2.4G Wi-Fi signal connection, and on the computer to achieve matching. At the same time, it has to deal with the drawbacks as mentioned above.

# SOLUTION OVERVIEW

Compared with wired machines and mobile phone software, wireless i-clickers have the following advantages: they are easy to carry, they can accurately match and identify user tags, they are difficult to cheat and would not distract students. A wireless voting system consists of a wireless i-clicker, a wireless receiver on the administrator side, and a corresponding software program. In order to solve the problem of signal reception which is common in schools, we decided to use 2.4GHz Wi-Fi signal for data transmission. In addition, different from other wireless voting devices that carry out identity confirmation and bind identity information on the hardware side, we decided to make an identity binding system on the software side, and at the same time return it in the hardware unit for customer confirmation.

# SOLUTION COMPONENTS

A mature i-clicker should have a hardware part and a software part. The hardware part needs economical and effective hardware logic design. These include the storage and transportation of user key signals through a single chip computer program, a simple LCD1602 display to provide immediate feedback, a 2.4GHz Wi-Fi transmit-receive device for many-to-one wireless signal transmission, and a beautiful shell design. While the software component includes the conversion of hardware signals to software signals, a mature voting system, authentication of device owners, and signal return to hardware systems.

## SCM HARDWARE LOGIC SYSTEM:

Use SCM to compile the LCD module, return user input value. STC89C52RC can easily do this. Pass data to the NRF wireless transmission module.

## WIRELESS 2.4G SIGNAL TRANSMISSION SYSTEM:

A wireless signal detector should be a many-to-one signal transmission system. Bluetooth is one-to-one and Radio frequency is expensive. So, Wi-Fi signal transmission is the best choice. Each detector should load a transmitter and a receiver to transmit data to the administrator and get the data transmitted by the software.

## HARDWARE-TO-SOFTWARE SIGNAL TRANSFER SYSTEM:

A Hard-to-Soft system is necessary in any similar design. We should write a driver to process data.

## SOFTWARE DATA PROCESSING SYSTEM:

Software ought to process the data signal accurately and generate feedback to each i-clicker. Specifically, a software is needed in our design. The administrator can get user data and display it visually through statistical charts. This system should also have the function to associate user information to their answer. This is designed to score. A return signal should also be designed here. Users can receive feedback on their detector screen.

## USER IDENTIFICATION SYSTEM ON SOFTWARE:

Give an internal ID number to each i-clicker. Bind identity information (such as NetID, Student number) to i-clicker internal ID number on the software. Users can get their binding information on their screen by pushing a specific button. This data will be reset when a new packet is returned by the administrator.

## 3D PRINT SHELL:

A beautiful shell that fits the hardware system is needed. The shell should not be too large and the buttons must fit into the hardware.

# CRITERION FOR SUCCESS

Stability: Signal should be received easily. Signal loss inside a room shouldn’t occur, especially when there is a gap of two chairs.

Affordability: I-clickers should have a low cost. This facilitates mass production and popularization on campus.

Efficiency: The process from keystroke to signal collection and transmission shouldn’t have a high delay.

Beauty: Shell design should be accepted widely and be accessible to 3D printing.

Feedback: Users should get the feedback from the administrator easily. This is useful in arousing study enthusiasm of students.

Concurrency: The system should handle signals from a great deal of students in a short period correctly.

# DISTRIBUTION OF WORK

Qishen Zhou: Software data processing system and user information identification system.

Bowen Li: Hardware-to-software data transfer system and SCM hardware logic system.

Yue Qiu: Wireless signal transmission system and processing the data returned from the administrator.

Mu Xie: 3D print shell design and physical setup for the hardware part.