Project

# Title Team Members TA Documents Sponsor
2 Smart Power Routing
Jiabao Shen
Jingjing Qiu
Xiaoyi Han
Yunfei Lyu
design_document1.pdf
proposal1.pdf
Timothy Lee
# TEAM MEMBERS
Yunfei Lyu 3200111297

Jingjing Qiu 3200110900

Jiabao Shen 3200112328

Xiaoyi Han 3200112425

# PROBLEM
Our "Smart Power Routing" project addresses the challenge of efficiently distributing and utilizing power among devices with varying needs, such as a lightbulb and a fan. Traditional systems struggle with dynamically managing power supply due to changing user demands and device requirements, often leading to energy waste and inconsistent device functionality. Our solution is a dynamic power management system that intelligently adapts voltage supply in real-time, responding to user interactions like switching devices or manual power generation. This project aims to demonstrate the practicality of smart power management in real-world scenarios, offering an accessible and engaging illustration of these principles for a broad audience.

# SOLUTION OVERVIEW
Our smart routing system manages and stores energy from electrical outlets and manual inputs — such as hand-crank generators and a pneumatic turbine — into a battery. After receiving power information from the sensor, it then dynamically allocates power to a fan and lightbulb in response to user interactions. The system's adaptability is managed by a microcontroller, which ensures efficient energy distribution and maintains device operation through variable conditions.

# SOLUTION COMPONENTS
## SUBSYSTEM 1: Energy Harvesting and Storage
This subsystem combines power from electrical sockets and manual energy generation methods, storing it in a battery for stable supply. It utilizes hand-crank generators and a pneumatic turbine, powered by a hand-squeezed air pump, to capture and convert mechanical energy into electrical energy. Diodes and charge controllers ensure efficient energy flow into the battery, safeguarding against overcharging and power backflow.

## SUBSYSTEM 2: User Interaction Interface
Switches and buttons serve as physical input devices. This user interaction interface captures user inputs, such as toggling the state of the socket, light, and fan, or activating the hand generator and turbine.

## SUBSYSTEM 3: Power Sensing and Load Management
The power requirements of the fan and lightbulb are constantly monitored by current sensors, informing the microcontroller of any fluctuations in power consumption. This data allows the system to adjust power distribution in real-time, maintaining an uninterrupted operation of the connected devices.

## SUBSYSTEM 4: Microcontroller and Power Adjustment
A microcontroller serves as the brain of the operation, processing sensor inputs and user interactions to manage the power flow effectively. It commands solid-state relays or transistor-based circuits to regulate the power supplied to the fan and lightbulb, ensuring their continuous operation.

## SUBSYSTEM 5: Display and Monitoring
An LED screen displays battery storage condition and real-time power usage for both the fan and lightbulb, providing a visual representation of the system’s efficiency and the power dynamics between the devices and the power sources.

# CRITERION FOR SUCCESS
- Reliability: The system should consistently provide uninterrupted power to both the fan and the lightbulb regardless of user interactions, such as turning switches on and off and the presence of manual power generation from hand cranks or turbine inputs.
- Efficiency: It should maximize the energy harvested from manual inputs and minimize losses during power conversion and distribution.
- Good Visualization: The project should successfully demonstrate the principles of smart power routing in a way that is understandable and engaging for viewers, with clear displays of current power and battery condition.
- Safety: The energy storage and distribution system must operate safely at all times, with built-in safeguards against overcharging, power backflow, and other potential hazards.
- Durability and Maintenance: The system should be built to last, with easy maintenance and robust construction to withstand frequent use, especially by those unfamiliar with the system.

# DESTRIBUTION OF WORK
## Yunfei Lyu - Project Manager and Quality Assurance
- Responsibilities: Yunfei will oversee the project as the manager, coordinating project timelines, resource distribution, and team communication. Yunfei is also tasked with ensuring the overall quality of the project, focusing on both hardware and software components to meet the established reliability and safety standards.

## Jingjing Qiu - Software Development
- Responsibilities: Jingjing will be responsible for developing the control software and energy management algorithm. The role involves coding the software to process input signals and dynamically adjust outputs, as well as implementing data logging capabilities.

## Jiabao Shen - Hardware Design and Safety Concerns
- Responsibilities: Jiabao will spearhead the design and assembly of the hardware components, which includes crafting a smart voltage regulation system and ensuring the hardware is durable and easy to maintain. Additionally, Jiabao will be responsible for integrating safety features such as circuit breakers and surge protectors.

## Xiaoyi Han - User Interface and Interaction
- Responsibilities: Xiaoyi's focus will be on enhancing user experience by developing an intuitive user interface (if applicable) and ensuring that the functional demonstration table is user-friendly and engaging. This role also entails testing the system's user interaction components for effectiveness and ease of use.

High Noon Sheriff Robot

Yilue Pan, Shuting Shao, Yuan Xu, Youcheng Zhang

Featured Project

# MEMBERS:

- Yuan Xu [yuanxu4]

- Shuting Shao [shao27]

- Youcheng Zhang [yz64]

- Yilue Pan [Yilvep2]

# TITLE:

HIGH NOON SHERIFF ROBOT

PROBLEM:

Nowadays with the increasing number of armed attacks and shooting incidents. The update for public places needs to be put on the agenda. Obviously, we could not let police and security to do all the jobs since humans might neglect some small action of threat behind hundreds of people and could not respond quickly to the threat. A second of hesitation might cost an innocent life. Our team aims on making some changes to this situation since nothing is higher than saving lifes not only victims but also gunners. We find some ideas in the Old western movies when two cowboys are going to a high noon duel, the sheriff will pull out the revolver quicker than the other and try to warn him before everything is too late. If we can develop a robot that can detect potential threats and pull out weapons first in order to warn the criminal to abandon the crime or use non-lethal weapons to take him down if he continues to pull out his gun.

# SOLUTION OVERVIEW:

In order to achieve effective protection in a legal way, we have developed the idea of a security robot. The robot can quickly detect dangerous people and fire a gun equipped with non-lethal ammunition to stop dangerous events.

The robot should satisfy the following behavioral logic:

- When the dangerous person is acting normally and there is no indication of impending danger, the robot should remain in standby mode with its robot arm away from the gun.

- When the dangerous person is in a position ready to draw his gun or other indication of dangerous behavior, the robot is also in a drawn position and its arm is already clutching the gun.

- When the dangerous person touches his gun, The robot should immediately draw the gun, move the hammer and finish aiming and firing to control the dangerous person. This type of robot would need to include three subsystems: Detection system, Electrical Control system, and Mechanical system.

# SOLUTION COMPONENTS:

## [SUBSYSTEM #1: DETECTION SUBSYSTEM]

This subsystem consists of a camera and PC. We are going to use YOLO v5 to detect object, determine the position of human and the gun. Use DeepSORT to track the object, let the camera follow the opponent. Use SlowFast to detect opponent’s behavior.

## [SUBSYSTEM #2: ELECTRICAL CONTROL SYSTEM]

This subsystem consists of a STM32, two high speed motors, two gimbal motors, one motor for revolver action and position sensor. The STM32 serves as the controller for the motors. The high speed motor will be used to move the mechanical grab to grab the revolver and pull it out as fast as possible so that it will use the position sensor as the end stop point instead of PID control. The gimbal motors serve as Yaw and Pitch motion for the revolver to control the accuracy of the revolver so that it needs encoders to give the angle feedback.

## [SUBSYSTEM #3: MECHANICAL SYSTEM]

This subsystem consists of a three-degree-of-freedom robot arm and a clamping mechanism fixed to the end of the arm. The clamping mechanism is used to achieve the gripping of the gun, the moving of the hammer and the pulling of the trigger. The mechanical arm is used to lift and aim the gun.

# CRITERION FOR SUCCESS

- Move Fast. The robot must draw its gun and aim faster than the opponent;

- Warning First. If opponent’s hand moves close to the gun on his waist, the robot should draw the gun and aim it at the opponent without firing. If the opponent gives up drawing a gun and surrender, the robot should put its gun back in place. Otherwise, the robot will shoot at the opponent.

- Accurate shooting. Under the premise that the opponent may move, the robot must accurately shoot the opponent's torso.

# DISTRIBUTION OF WORK

- EE Student Shuting Shao: Responsible for object detection and object tracking.

- EE Student Yuan Xu: Responsible for behavior detection and video processing.

- EE Student Youcheng Zhang: Responsible for electrical control system.

- ME Student Yilue Pan: Responsible for the Mechanical system.