Project

# Title Team Members TA Documents Sponsor
2 Smart Power Routing
Jiabao Shen
Jingjing Qiu
Xiaoyi Han
Yunfei Lyu
design_document1.pdf
final_paper1.pdf
final_paper2.pdf
proposal1.pdf
Timothy Lee
# TEAM MEMBERS
Yunfei Lyu 3200111297

Jingjing Qiu 3200110900

Jiabao Shen 3200112328

Xiaoyi Han 3200112425

# PROBLEM
Our "Smart Power Routing" project addresses the challenge of efficiently distributing and utilizing power among devices with varying needs, such as a lightbulb and a fan. Traditional systems struggle with dynamically managing power supply due to changing user demands and device requirements, often leading to energy waste and inconsistent device functionality. Our solution is a dynamic power management system that intelligently adapts voltage supply in real-time, responding to user interactions like switching devices or manual power generation. This project aims to demonstrate the practicality of smart power management in real-world scenarios, offering an accessible and engaging illustration of these principles for a broad audience.

# SOLUTION OVERVIEW
Our smart routing system manages and stores energy from electrical outlets and manual inputs — such as hand-crank generators and a pneumatic turbine — into a battery. After receiving power information from the sensor, it then dynamically allocates power to a fan and lightbulb in response to user interactions. The system's adaptability is managed by a microcontroller, which ensures efficient energy distribution and maintains device operation through variable conditions.

# SOLUTION COMPONENTS
## SUBSYSTEM 1: Energy Harvesting and Storage
This subsystem combines power from electrical sockets and manual energy generation methods, storing it in a battery for stable supply. It utilizes hand-crank generators and a pneumatic turbine, powered by a hand-squeezed air pump, to capture and convert mechanical energy into electrical energy. Diodes and charge controllers ensure efficient energy flow into the battery, safeguarding against overcharging and power backflow.

## SUBSYSTEM 2: User Interaction Interface
Switches and buttons serve as physical input devices. This user interaction interface captures user inputs, such as toggling the state of the socket, light, and fan, or activating the hand generator and turbine.

## SUBSYSTEM 3: Power Sensing and Load Management
The power requirements of the fan and lightbulb are constantly monitored by current sensors, informing the microcontroller of any fluctuations in power consumption. This data allows the system to adjust power distribution in real-time, maintaining an uninterrupted operation of the connected devices.

## SUBSYSTEM 4: Microcontroller and Power Adjustment
A microcontroller serves as the brain of the operation, processing sensor inputs and user interactions to manage the power flow effectively. It commands solid-state relays or transistor-based circuits to regulate the power supplied to the fan and lightbulb, ensuring their continuous operation.

## SUBSYSTEM 5: Display and Monitoring
An LED screen displays battery storage condition and real-time power usage for both the fan and lightbulb, providing a visual representation of the system’s efficiency and the power dynamics between the devices and the power sources.

# CRITERION FOR SUCCESS
- Reliability: The system should consistently provide uninterrupted power to both the fan and the lightbulb regardless of user interactions, such as turning switches on and off and the presence of manual power generation from hand cranks or turbine inputs.
- Efficiency: It should maximize the energy harvested from manual inputs and minimize losses during power conversion and distribution.
- Good Visualization: The project should successfully demonstrate the principles of smart power routing in a way that is understandable and engaging for viewers, with clear displays of current power and battery condition.
- Safety: The energy storage and distribution system must operate safely at all times, with built-in safeguards against overcharging, power backflow, and other potential hazards.
- Durability and Maintenance: The system should be built to last, with easy maintenance and robust construction to withstand frequent use, especially by those unfamiliar with the system.

# DESTRIBUTION OF WORK
## Yunfei Lyu - Project Manager and Quality Assurance
- Responsibilities: Yunfei will oversee the project as the manager, coordinating project timelines, resource distribution, and team communication. Yunfei is also tasked with ensuring the overall quality of the project, focusing on both hardware and software components to meet the established reliability and safety standards.

## Jingjing Qiu - Software Development
- Responsibilities: Jingjing will be responsible for developing the control software and energy management algorithm. The role involves coding the software to process input signals and dynamically adjust outputs, as well as implementing data logging capabilities.

## Jiabao Shen - Hardware Design and Safety Concerns
- Responsibilities: Jiabao will spearhead the design and assembly of the hardware components, which includes crafting a smart voltage regulation system and ensuring the hardware is durable and easy to maintain. Additionally, Jiabao will be responsible for integrating safety features such as circuit breakers and surge protectors.

## Xiaoyi Han - User Interface and Interaction
- Responsibilities: Xiaoyi's focus will be on enhancing user experience by developing an intuitive user interface (if applicable) and ensuring that the functional demonstration table is user-friendly and engaging. This role also entails testing the system's user interaction components for effectiveness and ease of use.

simplified device for fasteners counter

Zhiwei Shen, Shuyang Wang, Yijian Yang, Jinsong Yuan

Featured Project

# PROBLEM DESCRIPTION

Lots of Industrial manufacturers need to realize real-time, efficient and accurate automatic counting of the assembly line products in the stages of production and transportation. On a standardized assembly line with stable operations, equal intervals and boxed objects the control system with infrared detection and microchip as the control core is effective and simple to implement. However, due to cost considerations, downstream manufacturers often prefer faster and less standardized assembly line operations during product inspection. Those unpackaged objects may have complex and changeable structures, and different kinds may have very similar structures. Moreover, the intervals and directions of these products on the assembly line are all random, which greatly increases the difficulty of monitoring, as well as achieving subsequent controlling purposes such as mechanical classification or equal-quantity loading.

After we discussed with people from a manufacturer, we realized their needs in this regard, so we decided to design an effective and low-cost device that realizes real-time monitoring and controlling towards specific industrial products with complex and random structures. From our investigations, we found that some factories use image recognition technology to achieve this goal, which turned out to be insufficient and costly because of their improper design. The manager of company complained about the stability, flexibility and fee of the traditional ways. After listening to the manager, we decide to implement our own ways to count line products, and our target is to increase the stability, flexibility and lower the cost.

By doing some research online, we confirmed that the most common monitoring system is still the infrared detection and microcontroller/PLC, which is effective for most assembly lines with products in boxes. And some newly developed approaches are based on cameras and computer vision, which we think are very potential but costly. Also, we found some other engineers still used simple infrared detection to achieve non-boxed objects monitoring. However, they met similar accuracy issues, like when two objects are too close to each other. Not to mention the objects that we are going to detect have much more complicated structures. In a word, we didn’t find any other monitoring system without using computer vision that can achieve our accuracy goal. So, our first major task is to come up with a better algorithm. We may also try pressure sensors, which is rarely used in assembly line object counting. In fact, we are going to investigate the feasibility of our idea by doing some experiments at their factory this week.

The scope of this specific problem might involve designing an embedded system with sensors and microcontroller unit to achieve the industrial control purpose, as well as programming and data analysis. Moreover, it may involve some knowledge about IoT because we also hope to use network module to transfer data and improve the automation level.

# solution overview

We plan to use infared sensor to dector the fasteners on the pipeline. We have two different kind of infared sensor in schedule. The first type could detect whether there exists objects within one meter, and the other one, which uses laser at the same time, can measure the distance between the surface of fasteners and the detector. The first one is cheaper but the second one could provide more imformation. We would choose in terms of real condition. There are also some alternative plans: we plan to use pressure sensor to count the total mass coming in and then calculate the number; acoustic rangefinder is another way to detect the distant in place of the second kind of infared sensor, and we will choose this plan if the original plan doesn't work so well.

Then, we plan to use PRI or PLC to process imformation. RPI is more powerful and enable us to write more complex code and develop some complicated functions such as classification of fasteners and nerual network which can analyze cutting pieces of fasteners, but PLC would be more stable in industry environemnt. The choice is mainly determined by real industry environment and the comments from manufacturers. We tend to use PLC to handle imformation from detectors and command the pipeline.

As for pipeline, workers put fasteners on the track. During the transportation, our device would count the number and in the end of pipeline, fasteners would be packed. After collecting enough fasteners, our machine would stop the pipeline.

# Solution Components

- Mono-chip(Raspberry Pi)

Price: around 300¥

Function: Receiving the data collected by the detector, processing it to get the number of fasteners that have passed, and transmitting the data to the remote-control center through the wireless interface.

We are going to use the neural network for modeling and use this model to count.

- Pressure-sensitive sensor

Price: 10¥-200¥

Function: Measuring the real-time weight on the sensor to assist in determining the number of products passed.

- Infrared sensor

Price: Already have

Function: Determining whether there is product passing.

- Laser rangefinder

Price: 60¥-200¥

Function: Measuring the distance between the product to the boundary of the conveyor belt.

- Acoustic rangefinder

Price: 200¥-300¥

Function: Measuring the distance between the product to the boundary of the conveyor belt.

- Remote-control Center

Price: Already have

Function: Receiving the data transmitted by the mono-chip, presenting the past products so far, and commanding every component according to that.

# CRITERION FOR SUCCESS

- High accuracy is required. The counter should have a error rate at 1%+-0.1%.

- The classifier is supposed to perform well, then the device can be migrated to a similar pipeline. The device is a kind of baler. When the input products are not of the same kind, if there is no classification function, packaging errors are likely to occur.

- The process of counting and classifying should take less time.

- The devicey should be stable enougth to be used in manifacture.

- Additional Function: Operator can control the machine and see results easily and remotely.

# sponsor

This project is well connected to industry. The company that sponsors us is 杭州六联机械科技有限公司(Hangzhou Liulian Machinery Technology Co., Ltd.) and the manager with whom we talked is 杨向峰(Xiangfeng Yang).