Equipment

This page does not apply to ZJUI. It will be updated in the coming weeks.

Lab Equipment

The Srivastava Senior Design Lab has a wide selection of equipment that provides nearly all of the capabilities of the other ECE teaching labs in one place. Although the equipment may not be identical to that found in these other teaching labs, similar functionality is offered. Use the experience of learning new equipment as a way to expand your horizons. If you are using a piece of equipment for the first time, ask a TA for assistance, to make sure you understand how to safely use it. If the available equipment does not meet the needs of your project, talk to the course staff, and we will help you find what you need elsewhere on campus, consider purchasing it for the senior design lab (if it would be used by many groups), or brainstorm alternate ways to solve your problem.

Lab Kits

Each team is provided with at least one lockable storage drawer in the lab as well as a portable lab kit. An additional drawer and/or kit may be issued as need arises and facilities allow.

The lab kit includes a box with carrying handle and contains a wiring board for prototyping circuit projects, a multiple-output power supply, a digital multimeter, and a set of 8 cables (2 bnc/bnc, 2bnc/pin, 2 banana/banana, and 2 banana/pin). This is checked out to you by your TA at the beginning of the semester and must be returned undamaged at the end of the semester. Missing lab kits will result in an encumbrance or withheld diploma and a charge of $500.00, so always be sure to lock your lockers! Also, do not store any cables from the lab in your kit. Doing so will result in a loss of points.

Test Equipment

Most equipment is connected to the PCs via HPIB cables. Below is a sampling of the test equipment available:

Specific setups at the various lab benches can be in the listing at the bottom of this page.

Computers

The lab has PCs with enough processing power for the needs of nearly any senior design project. These machines are networked to a high-capacity laser printer (printing will count against your standard print quota). Each has an Ethernet connection to the campus network, an HPIB interface card connecting it to all of the standard instruments on its bench, and a sound card. The computers are maintained by Engineering IT, located in 3080 ECE Building.

The PCs are presently configured with the software shown here. Their primary uses include:

Test Equipment (Listed by lab bench)

 
Bench: A
Oscilloscope Rohde & Schwarz RTE 1054
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: B
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: C
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: D (Power)
Oscilloscope Agilent DSO-X 6004A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Triple Output Power Supply Hewlett-Packard 6235A
Digital Power Analyzer Valhalla Scientific 2101
DC Power Supply Hewlett-Packard 6632A
DC Electronic Load Agilent 6060B
kW Power Supply Sorensen DCS 20-50
 
Bench: E
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
 
Bench: F
Oscilloscope Teledyne LeCroy HDO 4054-MS
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
 
Bench: G (power)
Oscilloscope Agilent DSO-X 6004A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Triple Output Power Supply Hewlett-Packard 6235A
DC Power Supply Hewlett-Packard 6632A
DC Electronic Load Hewlett-Packard 6060B
Current Probe Amplifier Tektronix AM 503
 
Bench: H (RF)
Mixed Domain Oscilloscope Tektronix MDO4054B-3
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
S-Parameter Network Analyzer Hewlett-Packard 8753ES
S-Parameter Test Set Hewlett-Packard 85047A
Pulse Generator Hewlett-Packard 8011A
Signal Generator Hewlett-Packard 8657B
 
Bench: I
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: J (RF)
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Triple Output Power Supply Hewlett-Packard 6235A
DC Power Supply Hewlett-Packard 6632A
Network Analyzer Hewlett-Packard 8751A
S-Parameter Test Set Hewlett-Packard 87511A
 
Bench: K
Oscilloscope Teledyne LeCroy HDO 4054-MS
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: L (RF)
Mixed Domain Oscilloscope Tektronix MDO4054B-3
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Vector Signal Analyzer Agilent 89441A
RF Section Hewlett-Packard 89440A
Signal Generator Hewlett-Packard 8657B
Precision LCR Meter Hewlett-Packard 4284A
 
Bench: M
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: N
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: O
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Triple Output Power Supply Hewlett-Packard 6235A
Communications Receiver AOR AR5000
 
Bench: P
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series

3D Scanner

Peiyuan Liu, Jiayi Luo, Yifei Song, Chenchen Yu

Featured Project

# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.