Teamwork

Description

The teamwork grade is composed of two assignments. The first teamwork evaluation, administered shortly after the Design Review phase, consists of feedback questions designed to help the ECE 445 Staff better understand how each student's group is progressing towards the final demo. If all questions are answered completely and thoughtfully, the student will be awarded 5 points for completion of the assignment. No partial credit will be awarded for late submissions. The survey may be completed on Compass2g.

The second teamwork evaluation is a subjective score that will be awarded at the end of the semester according to the criteria below. Partner evaluations may be completed on Compass2g at the end of the semester to help determine this score. Responses to both surveys are confidential and will not be disclosed to the other teammates in the student's group.

Requirements and Grading

Each student in a group will be evaluated on the following criteria:

Submission and Deadlines

The teamwork evaluation forms should be completed on Compass2g by the deadlines listed on the Course Calendar. Teamwork evaluation sheets will be taken into account when teamwork grades are assigned. However, these scores will not fully determine the teamwork grade.

Filtered Back – Projection Optical Demonstration

Featured Project

Project Description

Computed Tomography, often referred to as CT or CAT scans, is a modern technology used for medical imaging. While many people know of this technology, not many people understand how it works. The concepts behind CT scans are theoretical and often hard to visualize. Professor Carney has indicated that a small-scale device for demonstrational purposes will help students gain a more concrete understanding of the technical components behind this device. Using light rather than x-rays, we will design and build a simplified CT device for use as an educational tool.

Design Methodology

We will build a device with three components: a light source, a screen, and a stand to hold the object. After placing an object on the stand and starting the scan, the device will record three projections by rotating either the camera and screen or object. Using the three projections in tandem with an algorithm developed with a graduate student, our device will create a 3D reconstruction of the object.

Hardware

• Motors to rotate camera and screen or object

• Grid of photo sensors built into screen

• Light source

• Power source for each of these components

• Control system for timing between movement, light on, and sensor readings