Soldering Assignment


The soldering assignment is a basic soldering exercise that ensures all ECE 445/ME 470 students understand how to solder surface-mount and through-hole devices. Students will be provided with the necessary PCB, components, solder, flux, etc. The details of the soldering assignment can be found in the assignment sheet.

Your end product should look similar to the following. You will create a small device that blinks an LED at varying frequencies when the button is pressed, based on a potentiometer reading.

Soldering Assignment Image

Below is a series of soldering tutorials. The critical ingredient that you need to make your life easier while surface mount soldering (and through-hole too) is flux. There is liquid, water-soluble flux available in the lab. If you can't find it or don't know what it looks like, ask a lab staff member or TA for help.

Requirements and Grading

The soldering assignment is worth 10 points and is graded via inspection by a TA or Lab Staff member. Students are allowed to make as many attempts as necessary to complete the assignment.

Submission and Deadlines

The soldered PCB must be presented to a course staff member before the deadline listed on the Course Calendar.

Video Tutorials

Below are a few public video tutorials on Soldering. There is also a text description of how to solder on the soldering assignment doc linked above.

Through-hole (THT) and surface-mount (SMD) soldering tutorial:

Tutorial on using the various types of flux:

Tutorial on using wick to remove solder:

Tutorial on using a heat gun:

A Wearable Device Outputting Scene Text For Blind People

Hangtao Jin, Youchuan Liu, Xiaomeng Yang, Changyu Zhu

A Wearable Device Outputting Scene Text For Blind People

Featured Project

# Revised

We discussed it with our mentor Prof. Gaoang Wang, and got a solution to solve the problem


Xiaomeng Yang (xy20), Youchuan Liu (yl38), Changyu Zhu (changyu4), Hangtao Jin (hangtao2)


Prof. Gaoang Wang


This idea was pitched on Web Board by Xiaomeng Yang.


Nowadays, there are about 12 million visually disabled people in China. However, it is hard for us to see blind people in the street. One reason is that when the blind people are going to the location they are not familiar with, it is difficult for blind people to figure out where they are. When blind people travel, they are usually equipped with navigation equipment, but the accuracy of navigation equipment is not enough, and it is difficult for blind people to find the accurate position of the destination when they arrive near the destination. Therefore, we'd like to make a device that can figure out the scene text information around the destination for blind people to reach the direct place.


We'd like to make a device with a micro camera and an earphone. By clicking a button, the camera will take a picture and send it to a remote server to process through a communication subsystem. After that, text messages will be extracted and recognized from the pictures using neural network, and be transferred to voice messages by Google text-to-speech API. The speech messages will then be sent back through the earphones to the users. The device can be attached to glasses that blind people wear.

The blind use the navigation equipment, which can tell them the location and direction of their destination, but the blind still need the detail direction of the destination. And our wearable device can help solve this problem. The camera is fixed to the head, just like our eyes. So when the blind person turns his head, the camera can capture the text of the scene in different directions. Our scenario is to identify the name of the store on the side of the street. These store signs are generally not tall, about two stories high. Blind people can look up and down to let the camera capture the whole store. Therefore, no matter where the store name is, it can be recognized.

For example, if a blind person aims to go to a book store, the navigation app will tell him that he arrives the store and it is on his right when he are near the destination. However, there are several stores on his right. Then the blind person can face to the right and take a photo of that direction, and figure out whether the store is there. If not, he can turn his head a little bit and take another photo of the new direction.




### Interactive Subsystem

The interactive subsystem interacts with the blind and the environment.

- 3-D printed frame that can be attached to the glasses through a snap-fit structure, which could holds all the accessories in place

- Micro camera that can take pictures

- Earphone that can output the speech

### Communication Subsystem

The communication subsystem is used to connect the interactive subsystem with the software processing subsystem.

- Raspberry Pi(RPI) can get the images taken by the camera and send them to the remote server through WiFi module. After processing in the remote server, RPI can receive the speech information(.mp3 file).

### Software Processing Subsystem

The software processing subsystem processes the images and output speech, which including two subparts, text recognition part and text-to-speech part.

- A OCR recognition neural network which is able to extract and recognize the Chinese text from the environmental images transported by the communication system.

- Google text-to-speech API is used to transfer the text we get to speech.


- Use neural network to recognize the Chinese scene text successfully.

- Use Google text-to-speech API to transfer the recognized text to speech.

- The device can transport the environment pictures or video to server and receive the speech information correctly.

- Blind people could use the speech information locate their position.