Final Demo

Description

The Final Demonstration (Final Demo) is the single, most important assignment in the course. It is the strongest measure of the success of your project. The evaluation focuses on the criteria of project completion, reliability, and professionalism. You will demo your full project to a group consisting of your Professor, your TA, and a few peer reviewers. Other guests (e.g. alumni, other course staff, visiting scholars, donors) may sometimes also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project to the instructors. If full functionality is not available, then students must be able to show the parts of the project that do function via the procedure listed in their Requirements and Verification Table. Credit will not be given for features which cannot be demonstrated, even if those features worked before and suddenly fail at the time of the final demo. Still, for any portion of the project which does not function as specified, students should have hypotheses and supporting evidence for what the problem may be.

The project team should be ready to justify design decisions and technical aspects of any part of the project (not just your own parts). Quantitative results are expected wherever applicable.

Grading is covered by the Demo Rubric, and is out of 150 points. Some of the key points are as follows:

  1. Completion: The project has been entirely completed.
  2. Thoroughness: Care and attention to detail are evident in construction and layout.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.

Submission and Deadlines

Sign-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review session as well.

A Direct Digitally Modulated Wireless Communication System

Qingyang Chen, Bingsheng Hua, Luyi Shen, Dingkun Wang

Featured Project

TEAM MEMBERS: Luyi Shen luyis2 Bingsheng Hua bhua5 Dingkun Wang dingkun2 Qingyang Chen qc20

PROJECT NAME: A Direct Digitally Modulated Wireless Communication System

PROBLEM: Communication system is closely related to our life. We measure communication systems primarily by their effectiveness and reliability. But in fact, validity and reliability are a pair of contradictory indicators, and they need a certain compromise. We hope to improve the efficiency of communication system on the basis of guaranteeing the accuracy of communication.

SOLUTION OVERVIEW: The project is to design and implement a kind of communication system for the next generation technology which is much more simplified compared to the systems that existed. The final version of the system should be expected to be able to transmit data like images and videos.

Our basic idea is that the information can be send in digital signal form to matesurface, EM waves will be sent to the matesurface and be scattered to space. The information we want to transit will be carried on scattered EM waves. And once the receiver receives the signal it will be decoded into the original information.

Basically, our project is a kind of innovation or re-creation of an existing communication system. The biggest difference between our design and other systems could be the method to process the information. There is a significant component in our future design called metasurface, which could be used to adjust the phase, magnitude, and polarization along with other significant properties of EM waves which can send multi-digit signal at same time.

As for the functionality of our project, we think it could be an interesting trial and we have faith to finish it since everything we need in the project we could find plenty of research materials and reports to look into. Even if the project is not applicable in the end, we believe the application of the metasurface material could be still powerful in communication system.

SOLUTION COMPONENTS: Metasurface: it could be used to adjust the phase, magnitude, and polarization along with other significant properties of EM waves. Receiver: it is where information will be received and decoded. FPGA: it is where information will be prepared and send to the metasurface. Signal emitter: Send EM wave to matesurface.

CRITERION FOR SUCCESS 1.The system could be used to transmit data like Images and Videos. 2.The system should be able to demonstrate a certain level of supreme communication efficiency

DISTRIBUTION OF WORK: Dingkun Wang & Qingyang Chen

Responsible for the software part of the communication system, including the information processing sent by the computer, the receiver information receives and decode, the interface between software and hardware, etc.

Bingsheng Hua & Luyi Shen

Responsible for the design of metasurface in the communication system and the construction of the hardware of the communication system.